On the eigenfunctions of the one-dimensional Schrodinger operator with a polynomial potential

被引:3
|
作者
Mironov, A. E. [1 ,2 ]
Saparbayeva, B. T. [3 ]
机构
[1] Russian Acad Sci, Sobolev Inst Math, Siberian Branch, Novosibirsk 630090, Russia
[2] Moscow MV Lomonosov State Univ, Fac Mech & Math, Lab Geometr Methods Math Phys, Moscow 119991, Russia
[3] Novosibirsk State Univ, Novosibirsk 630090, Russia
基金
俄罗斯科学基金会;
关键词
ORDINARY DIFFERENTIAL-OPERATORS; EQUATIONS;
D O I
10.1134/S1064562415020179
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
[No abstract available]
引用
收藏
页码:171 / 172
页数:2
相关论文
共 50 条
  • [31] On the numerical approximation of one-dimensional nonconservative hyperbolic systems
    Chalmers, N.
    Lorin, E.
    JOURNAL OF COMPUTATIONAL SCIENCE, 2013, 4 (1-2) : 111 - 124
  • [32] Periodic solutions for a class of one-dimensional Boussinesq systems
    Quintero, Jose R.
    Montes, Alex M.
    DYNAMICS OF PARTIAL DIFFERENTIAL EQUATIONS, 2016, 13 (03) : 241 - 261
  • [33] One-dimensional hyperbolic conservation laws: Past and future
    Bressan, Alberto
    JOURNAL OF HYPERBOLIC DIFFERENTIAL EQUATIONS, 2024, 21 (03) : 523 - 561
  • [34] A WASSERSTEIN APPROACH TO THE ONE-DIMENSIONAL STICKY PARTICLE SYSTEM
    Natile, Luca
    Savare, Giuseppe
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2009, 41 (04) : 1340 - 1365
  • [35] ANALYSIS OF ONE-DIMENSIONAL STRUCTURES USING LIE GROUPS
    Hariz, Marwan
    Marrec, Loic
    Lerbet, Jean
    MATHEMATICS AND MECHANICS OF COMPLEX SYSTEMS, 2024, 12 (04) : 333 - 358
  • [36] Formation and propagation of singularities in one-dimensional Chaplygin gas
    Kong, De-Xing
    Wei, Changhua
    JOURNAL OF GEOMETRY AND PHYSICS, 2014, 80 : 58 - 70
  • [37] Bifractality in the one-dimensional Wolf-Villain model
    Luis, Edwin E. Mozo
    Ferreira, Silvio C.
    de Assis, Thiago A.
    PHYSICAL REVIEW E, 2024, 110 (01)
  • [38] A numerical scheme for the one-dimensional neural field model
    Gokce, Aytul
    Guerbuez, Burcu
    INTERNATIONAL JOURNAL OF OPTIMIZATION AND CONTROL-THEORIES & APPLICATIONS-IJOCTA, 2022, 12 (02): : 184 - 193
  • [39] On the Hughes' model for pedestrian flow: The one-dimensional case
    Di Francesco, Marco
    Markowich, Peter A.
    Pietschmann, Jan-Frederik
    Wolfram, Marie-Therese
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2011, 250 (03) : 1334 - 1362
  • [40] One-dimensional dynamic model of a paper forming process
    Turnbull, PF
    Perkins, NC
    Schultz, WW
    Beuther, PD
    TAPPI JOURNAL, 1997, 80 (01): : 245 - 253