On the eigenfunctions of the one-dimensional Schrodinger operator with a polynomial potential

被引:3
作者
Mironov, A. E. [1 ,2 ]
Saparbayeva, B. T. [3 ]
机构
[1] Russian Acad Sci, Sobolev Inst Math, Siberian Branch, Novosibirsk 630090, Russia
[2] Moscow MV Lomonosov State Univ, Fac Mech & Math, Lab Geometr Methods Math Phys, Moscow 119991, Russia
[3] Novosibirsk State Univ, Novosibirsk 630090, Russia
基金
俄罗斯科学基金会;
关键词
ORDINARY DIFFERENTIAL-OPERATORS; EQUATIONS;
D O I
10.1134/S1064562415020179
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
[No abstract available]
引用
收藏
页码:171 / 172
页数:2
相关论文
共 13 条
[1]  
[Anonymous], 1977, Funct. Anal. Appl
[2]  
Burchnall JL, 1923, P LOND MATH SOC, V21, P420
[3]  
Chudnovsky D., 1994, ACTA APPL MATH, V279, P167
[4]   ON SELF-ADJOINT COMMUTING DIFFERENTIAL OPERATORS OF RANK TWO [J].
Davletshina, V. N. .
SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2013, 10 :109-112
[5]  
DIXMIER J, 1968, B SOC MATH FR, V96, P209
[6]   On the relation between Stokes multipliers and the T-Q systems of conformal field theory [J].
Dorey, P ;
Tateo, R .
NUCLEAR PHYSICS B, 1999, 563 (03) :573-602
[7]   HOLOMORPHIC BUNDLES OVER ALGEBRAIC-CURVES AND NON-LINEAR EQUATIONS [J].
KRICHEVER, IM ;
NOVIKOV, SP .
RUSSIAN MATHEMATICAL SURVEYS, 1980, 35 (06) :53-79
[8]  
Masoero D., 2010, J PHYS A, V43, P1
[9]  
Mironov A. E., AM MATH SOC T 2
[10]  
Mironov A. E., 2013, P 6 EUR C MATH EUR M, P459