Pseudo Essential Spectra in Banach Space and Application to Operator Matrices

被引:2
作者
Abdmouleh, Faical [1 ]
Elgabeur, Bilel [2 ]
机构
[1] Univ Sfax, Higher Inst Ind Management Sfax, Sfax, Tunisia
[2] Univ Sfax, Fac Sci Sfax, Sfax, Tunisia
关键词
Pseudo spectrum; Pseudo essential spectrum; Left (right) Fredholm; Left (right) Browder; Riesz operator; Matrix operators; ESSENTIAL PSEUDOSPECTRA; RIGHT BROWDER;
D O I
10.1007/s10440-022-00527-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we introduce and study the pseudo left (right)-Fredholm and pseudo left (right)-Browder essential spectra of bounded linear operators in a Banach space. We start by giving the definition and we investigate some proprieties of these pseudo essential spectra like the stability under Riesz operator perturbations. Moreover, we describe the pseudo left (right)-Fredholm and pseudo left (right)-Browder essential spectra of the sum of two bounded linear operators. Finally, we apply the obtained result to characterize the pseudo left (right)-Fredholm and pseudo left (right)-Browder spectra of 2x2 block operator matrices.
引用
收藏
页数:16
相关论文
共 15 条
[1]  
Abdmouleh F., PREPRINT
[2]   A Characterization of the Pseudo-Browder Essential Spectra of Linear Operators and Application to a Transport Equation [J].
Abdmouleh, Faical ;
Ammar, Aymen ;
Jeribi, Aref .
JOURNAL OF COMPUTATIONAL AND THEORETICAL TRANSPORT, 2015, 44 (03) :141-153
[3]  
Ammar A, 2013, Extracta Math., V28, P95
[4]   A note on the essential pseudospectra and application [J].
Ammar, Aymen ;
Boukettaya, Bilel ;
Jeribi, Aref .
LINEAR & MULTILINEAR ALGEBRA, 2016, 64 (08) :1474-1483
[5]   A characterization of the essential pseudospectra on a Banach space [J].
Ammar, Aymen ;
Jeribi, Aref .
ARABIAN JOURNAL OF MATHEMATICS, 2013, 2 (02) :139-145
[6]  
[Anonymous], 2007, Semi-Fredholm operator, perturbations theory and localized SVEP
[7]  
Davies E.B, 1995, SPECTRAL THEORY DIFF, V42, DOI [10.1017/CBO9780511623721, DOI 10.1017/CBO9780511623721]
[8]   ROBUST STABILITY OF LINEAR EVOLUTION OPERATORS ON BANACH-SPACES [J].
HINRICHSEN, D ;
PRITCHARD, AJ .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1994, 32 (06) :1503-1541
[9]   SZEGOS EIGENVALUE DISTRIBUTION THEOREM AND NON-HERMITIAN KERNELS [J].
LANDAU, HJ .
JOURNAL D ANALYSE MATHEMATIQUE, 1975, 28 :335-357
[10]  
Müller V, 2007, OPER THEORY ADV APPL, V139, P1