Equational theories as congruences of enriched monoids

被引:3
|
作者
Nurakunov, A. M. [1 ]
机构
[1] Natl Acad Sci, Inst Math, Bishkek 720071, Kyrgyzstan
关键词
equational theory; variety; lattice; monoid; congruence;
D O I
10.1007/s00012-008-2080-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The problem of characterizing the lattices of equational theories is still unsolved. In this paper we describe a class K of monoids enriched by two unary operations and show that a lattice L is a lattice of equational theories if and only if L is isomorphic to a lattice of congruences of some enriched monoid belonging to K.
引用
收藏
页码:357 / 372
页数:16
相关论文
共 25 条
  • [1] Equational theories as congruences of enriched monoids
    A. M. Nurakunov
    Algebra universalis, 2008, 58 : 357 - 372
  • [2] Classification of congruences of twisted partition monoids
    East, James
    Ruskuc, Nik
    ADVANCES IN MATHEMATICS, 2022, 395
  • [3] Star-linear equational theories of groupoids
    Dapic, P.
    Jezek, J.
    Markovic, P.
    McKenzie, R.
    Stanovsky, D.
    ALGEBRA UNIVERSALIS, 2007, 56 (3-4) : 357 - 397
  • [4] STAR-QUASILINEAR EQUATIONAL THEORIES OF GROUPOIDS
    Dapic, Petar
    Jezek, Jaroslav
    Markovic, Petar
    STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA, 2010, 47 (02) : 267 - 288
  • [5] Star-linear equational theories of groupoids
    P. Ðapić
    J. Ježek
    P. Marković
    R. McKenzie
    D. Stanovský
    Algebra universalis, 2007, 56 : 357 - 397
  • [6] Congruences on direct products of transformation and matrix monoids
    Araujo, Joao
    Bentz, Wolfram
    Gomes, Gracinda M. S.
    SEMIGROUP FORUM, 2018, 97 (03) : 384 - 416
  • [7] Equational theories of semigroups with involution
    Auinger, Karl
    Dolinka, Igor
    Volkov, Mikhail V.
    JOURNAL OF ALGEBRA, 2012, 369 : 203 - 225
  • [8] Congruences on direct products of transformation and matrix monoids
    João Araújo
    Wolfram Bentz
    Gracinda M. S. Gomes
    Semigroup Forum, 2018, 97 : 384 - 416
  • [9] Unification problem in equational theories
    S. L. Kryvyi
    Cybernetics and Systems Analysis, 1997, 33 : 874 - 899
  • [10] On equational theories of classes of finite rings
    V. Y. Popov
    Siberian Mathematical Journal, 1999, 40 : 556 - 564