A NON-CONVEX NON-SMOOTH BI-LEVEL PARAMETER LEARNING FOR IMPULSE AND GAUSSIAN NOISE MIXTURE REMOVING

被引:15
|
作者
Nachaoui, Mourad [1 ]
Afraites, Lekbir [1 ]
Hadri, Aissam [2 ]
Laghrib, Amine [1 ]
机构
[1] Univ Sultan Moulay Slimane, EMI FST Beni Mellal, Beni Mellal, Morocco
[2] Univ IBN ZOHR Agadir, Lab SIE, Agadir, Morocco
关键词
  Non-convex function; mixture noise; learning parameter; bi-level optimization; OPTIMALITY CONDITIONS; BILEVEL OPTIMIZATION; PROGRAMS; MODEL;
D O I
10.3934/cpaa.2022018
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper introduce a novel optimization procedure to reduce mixture of Gaussian and impulse noise from images. This technique exploits a non-convex PDE-constrained characterized by a fractional-order operator. The used non-convex term facilitated the impulse component approximation controlled by a spatial parameter-y. A non-convex and non-smooth bi-level optimization framework with a modified projected gradient algorithm is then proposed in order to learn the parameter-y. Denoising tests confirm that the non-convex term and learned parameter-y lead in general to an improved reconstruction when compared to results of convex norm and manual parameter lambda choice.
引用
收藏
页码:1249 / 1291
页数:43
相关论文
共 50 条
  • [1] A NON-CONVEX DENOISING MODEL FOR IMPULSE AND GAUSSIAN NOISE MIXTURE REMOVING USING BI-LEVEL PARAMETER IDENTIFICATION
    Afraites, Lekbir
    Hadri, Aissam
    Laghrib, Amine
    Nachaoui, Mourad
    INVERSE PROBLEMS AND IMAGING, 2022, 16 (04) : 827 - 870
  • [2] Effective Proximal Methods for Non-convex Non-smooth Regularized Learning
    Liang, Guannan
    Tong, Qianqian
    Ding, Jiahao
    Pan, Miao
    Bi, Jinbo
    20TH IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM 2020), 2020, : 342 - 351
  • [3] A NON-CONVEX PDE-CONSTRAINED DENOISING MODEL FOR IMPULSE AND GAUSSIAN NOISE MIXTURE REDUCTION
    Laghrib, Amine
    Afraites, Lekbir
    Hadri, Aissam
    Nachaoui, Mourad
    INVERSE PROBLEMS AND IMAGING, 2023, 17 (01) : 23 - 67
  • [4] Learning an Alternating Bergman Network for Non-convex and Non-smooth Optimization Problems
    Wang, Yiyang
    Liu, Risheng
    Su, Zhixun
    INTELLIGENCE SCIENCE AND BIG DATA ENGINEERING, ISCIDE 2017, 2017, 10559 : 11 - 27
  • [5] A Stochastic Subgradient Method for Distributionally Robust Non-convex and Non-smooth Learning
    Mert Gürbüzbalaban
    Andrzej Ruszczyński
    Landi Zhu
    Journal of Optimization Theory and Applications, 2022, 194 : 1014 - 1041
  • [6] A method to construct a quasi-normal cone for non-convex and non-smooth set and its applications to non-convex and non-smooth optimization
    Li, Hongwei
    Zhou, Dequn
    Liu, Qinghuai
    WCICA 2006: SIXTH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION, VOLS 1-12, CONFERENCE PROCEEDINGS, 2006, : 1585 - +
  • [7] A Stochastic Subgradient Method for Distributionally Robust Non-convex and Non-smooth Learning
    Gurbuzbalaban, Mert
    Ruszczynski, Andrzej
    Zhu, Landi
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2022, 194 (03) : 1014 - 1041
  • [8] Efficient Convex Optimization for Non-convex Non-smooth Image Restoration
    Li, Xinyi
    Yuan, Jing
    Tai, Xue-Cheng
    Liu, Sanyang
    JOURNAL OF SCIENTIFIC COMPUTING, 2024, 99 (02)
  • [9] ON A NEW SMOOTHING TECHNIQUE FOR NON-SMOOTH, NON-CONVEX OPTIMIZATION
    Yilmaz, Nurullah
    Sahiner, Ahmet
    NUMERICAL ALGEBRA CONTROL AND OPTIMIZATION, 2020, 10 (03): : 317 - 330
  • [10] Minimization of Non-smooth, Non-convex Functionals by Iterative Thresholding
    Bredies, Kristian
    Lorenz, Dirk A.
    Reiterer, Stefan
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2015, 165 (01) : 78 - 112