Distributed Optimal Power Flow with Data-Driven Sensitivity Computation

被引:0
|
作者
Sen Sarma, Debopama [1 ]
Cupelli, Lisette [2 ]
Ponci, Ferdinanda [3 ]
Monti, Antonello [3 ]
机构
[1] TU Dortmund, Inst Energy Syst Energy Efficiency & Energy Econ, Dortmund, Germany
[2] Rolls Royce Power Syst, Friedrichshafen, Germany
[3] Rhein Westfal TH Aachen, Inst Automat Complex Power Syst, Aachen, Germany
来源
2021 IEEE MADRID POWERTECH | 2021年
关键词
data driven; distributed optimal power flow; linear regression;
D O I
10.1109/PowerTech46648.2021.9494927
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
On account of the increasing influx of distributed energy resources into modern power grids, it is essential to develop efficient distributed control and optimization algorithms capable of providing suitable solutions with access to local data alone. This paper uses a distributed optimal power flow (OPF) algorithm based on a gradient projection method, which applies to any arbitrary grid topology, to solve the OPF problem. A multi-variable linear regression method learns the network sensitivities with historical operational data. The use of a data-driven approach avoids the requirement of accurate information on line parameters and network topology. Additionally, introduced curtailment cost factors into the objective cost function encourage the usage of renewable power sources. In conclusion, we show that the solution achieved using data-driven sensitivities provides an average optimality gap of 1.8% to the centralized OPF solution with numerical test results on a modified IEEE 69 bus system.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] Data-Driven Optimal Distributed Fault Detection Based on Subspace Identification for Large-Scale Interconnected Systems
    Li, Biao
    Yang, Ying
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2024, 20 (02) : 2497 - 2507
  • [42] A Data-Driven Fault Prediction Method for Power Transformers
    Chen, Zhuo
    Chen, Junxingxu
    Qiao, Hong
    Xu, Xianyong
    Xiao, Jian
    Long, Yanbo
    2021 13TH INTERNATIONAL CONFERENCE ON MEASURING TECHNOLOGY AND MECHATRONICS AUTOMATION (ICMTMA 2021), 2021, : 145 - 149
  • [43] A linear AC unit commitment formulation: An application of data-driven linear power flow model
    Shao, Zhentong
    Zhai, Qiaozhu
    Han, Zhihan
    Guan, Xiaohong
    INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2023, 145
  • [44] Data-driven virtual power plant aggregation method
    Bai, Xueyan
    Fan, Yanfang
    Hao, Ruixin
    Yu, Jiaquan
    ELECTRICAL ENGINEERING, 2025, 107 (01) : 569 - 578
  • [45] A Data-Driven Approach to Interactive Visualization of Power Systems
    Zhu, Jun
    Zhuang, Eric
    Ivanov, Chavdar
    Yao, Ziwen
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2011, 26 (04) : 2539 - 2546
  • [46] Optimal DMD Koopman Data-Driven Control of a Worm Robot
    Rahmani, Mehran
    Redkar, Sangram
    BIOMIMETICS, 2024, 9 (11)
  • [47] Data-driven Power System Operation Mode Analysis
    Hou Q.
    Du E.
    Tian X.
    Liu F.
    Zhang N.
    Kang C.
    Zhongguo Dianji Gongcheng Xuebao/Proceedings of the Chinese Society of Electrical Engineering, 2021, 41 (01): : 1 - 12
  • [48] Data-driven optimal binning for respiratory motion management in PET
    Kesner, Adam L.
    Meier, Joseph G.
    Burckhardt, Darrell D.
    Schwartz, Jazmin
    Lynch, David A.
    MEDICAL PHYSICS, 2018, 45 (01) : 277 - 286
  • [49] Data-Driven Optimal Synchronization for Complex Networks With Unknown Dynamics
    Hu, Wenjie
    Gao, Luli
    Dong, Tao
    IEEE ACCESS, 2020, 8 : 224083 - 224091
  • [50] Distributed optimal power flow with discrete control variables of large distributed power systems
    Lin, Ch'i-Hsin
    Lin, Shin-Yeu
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2008, 23 (03) : 1383 - 1392