Distributed Optimal Power Flow with Data-Driven Sensitivity Computation

被引:0
|
作者
Sen Sarma, Debopama [1 ]
Cupelli, Lisette [2 ]
Ponci, Ferdinanda [3 ]
Monti, Antonello [3 ]
机构
[1] TU Dortmund, Inst Energy Syst Energy Efficiency & Energy Econ, Dortmund, Germany
[2] Rolls Royce Power Syst, Friedrichshafen, Germany
[3] Rhein Westfal TH Aachen, Inst Automat Complex Power Syst, Aachen, Germany
来源
2021 IEEE MADRID POWERTECH | 2021年
关键词
data driven; distributed optimal power flow; linear regression;
D O I
10.1109/PowerTech46648.2021.9494927
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
On account of the increasing influx of distributed energy resources into modern power grids, it is essential to develop efficient distributed control and optimization algorithms capable of providing suitable solutions with access to local data alone. This paper uses a distributed optimal power flow (OPF) algorithm based on a gradient projection method, which applies to any arbitrary grid topology, to solve the OPF problem. A multi-variable linear regression method learns the network sensitivities with historical operational data. The use of a data-driven approach avoids the requirement of accurate information on line parameters and network topology. Additionally, introduced curtailment cost factors into the objective cost function encourage the usage of renewable power sources. In conclusion, we show that the solution achieved using data-driven sensitivities provides an average optimality gap of 1.8% to the centralized OPF solution with numerical test results on a modified IEEE 69 bus system.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Data-driven Power Flow Calculation Method Guided by Physical Mechanism
    Zhan, Pengxiang
    Huang, Feihu
    Liao, Sirui
    Peng, Jian
    Xu, Wenzheng
    Li, Qiang
    Zhang, Linghao
    Dianwang Jishu/Power System Technology, 2024, 48 (12): : 5034 - 5045
  • [22] A Data-Driven Warm Start Approach for Convex Relaxation in Optimal Gas Flow
    Liu, Haizhou
    Yang, Lun
    Shen, Xinwei
    Guo, Qinglai
    Sun, Hongbin
    Shahidehpour, Mohammad
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2021, 36 (06) : 5948 - 5951
  • [23] Overview on Data-driven Optimal Scheduling Methods of Power System in Uncertain Environment
    Lu Z.
    Xu X.
    Yan Z.
    Wu J.
    Sang D.
    Wang S.
    Dianli Xitong Zidonghua/Automation of Electric Power Systems, 2020, 44 (21): : 172 - 183
  • [24] Data-Driven Distributed Optimal Control Using Neighbourhood Optimization for Nonlinear Interconnected Systems
    Farzanegan, Behzad
    Menhaj, Mohammad Bagher
    Suratgar, Amir Abolfazl
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2024, 203 (01) : 1054 - 1082
  • [25] Distributed Data-Driven Control of Transportation Networks
    Toro, Vladimir
    Mojica-Nava, Eduardo
    Rakoto-Ravalontsalama, Naly
    IFAC PAPERSONLINE, 2022, 55 (10): : 239 - 244
  • [26] Data-driven computation for history-dependent materials
    Ladeveze, Pierre
    Neron, David
    Gerbaud, Paul-William
    COMPTES RENDUS MECANIQUE, 2019, 347 (11): : 831 - 844
  • [27] A data-driven probabilistic power flow method based on convolutional neural networks
    Wang, Dawei
    Zheng, Kedi
    Chen, Qixin
    Zhang, Xuan
    Luo, Gang
    INTERNATIONAL TRANSACTIONS ON ELECTRICAL ENERGY SYSTEMS, 2020, 30 (07):
  • [28] Data-Driven Distributed Optimal Consensus Control for Unknown Multiagent Systems With Input-Delay
    Zhang, Huaipin
    Yue, Dong
    Dou, Chunxia
    Zhao, Wei
    Xie, Xiangpeng
    IEEE TRANSACTIONS ON CYBERNETICS, 2019, 49 (06) : 2095 - 2105
  • [29] A Data-Driven Genetic Algorithm for Power Flow Optimization in the Power System With Phase Shifting Transformer
    Li, Zuohong
    Li, Feng
    Liu, Ruoping
    Yu, Mengze
    Chen, Zhiying
    Xie, Zihao
    Du, Zhaobin
    FRONTIERS IN ENERGY RESEARCH, 2022, 9
  • [30] A Data-Driven Approach to Linearize Power Flow Equations Considering Measurement Noise
    Liu, Yuxiao
    Wang, Yi
    Zhang, Ning
    Lu, Dan
    Kang, Chongqing
    IEEE TRANSACTIONS ON SMART GRID, 2020, 11 (03) : 2576 - 2587