Distributed Optimal Power Flow with Data-Driven Sensitivity Computation

被引:0
|
作者
Sen Sarma, Debopama [1 ]
Cupelli, Lisette [2 ]
Ponci, Ferdinanda [3 ]
Monti, Antonello [3 ]
机构
[1] TU Dortmund, Inst Energy Syst Energy Efficiency & Energy Econ, Dortmund, Germany
[2] Rolls Royce Power Syst, Friedrichshafen, Germany
[3] Rhein Westfal TH Aachen, Inst Automat Complex Power Syst, Aachen, Germany
来源
2021 IEEE MADRID POWERTECH | 2021年
关键词
data driven; distributed optimal power flow; linear regression;
D O I
10.1109/PowerTech46648.2021.9494927
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
On account of the increasing influx of distributed energy resources into modern power grids, it is essential to develop efficient distributed control and optimization algorithms capable of providing suitable solutions with access to local data alone. This paper uses a distributed optimal power flow (OPF) algorithm based on a gradient projection method, which applies to any arbitrary grid topology, to solve the OPF problem. A multi-variable linear regression method learns the network sensitivities with historical operational data. The use of a data-driven approach avoids the requirement of accurate information on line parameters and network topology. Additionally, introduced curtailment cost factors into the objective cost function encourage the usage of renewable power sources. In conclusion, we show that the solution achieved using data-driven sensitivities provides an average optimality gap of 1.8% to the centralized OPF solution with numerical test results on a modified IEEE 69 bus system.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] A Data-Driven Linear Optimal Power Flow Model for Distribution Networks
    Li, Penghua
    Wu, Wenchuan
    Wang, Xiaoming
    Xu, Bin
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2023, 38 (01) : 956 - 959
  • [2] Data-driven distributed photovoltaic power prediction
    Xie, Zhigang
    Cui, Jinzhu
    Ma, Qiubo
    Xia, Chengbi
    Tang, Xin
    INTERNATIONAL JOURNAL OF LOW-CARBON TECHNOLOGIES, 2025, 20 : 702 - 710
  • [3] OptNet-Embedded Data-Driven Approach for Optimal Power Flow Proxy
    Jia, Yixiong
    Su, Yiqin
    Wang, Chenxi
    Wang, Yi
    IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, 2025, 61 (01) : 1770 - 1778
  • [4] Overview of Data-driven Power Flow Linearization
    Jia, Mengshuo
    Hug, Gabriela
    2023 IEEE BELGRADE POWERTECH, 2023,
  • [5] Data-driven Nonlinear Power Flow Regression and Analytical Sensitivity Calculation Using MLSSVR
    Yang H.
    Zhu Y.
    Liu C.
    Cai G.
    Li X.
    Liu M.
    Zhongguo Dianji Gongcheng Xuebao/Proceedings of the Chinese Society of Electrical Engineering, 2022, 42 (21): : 7706 - 7718
  • [6] Data-driven alternating current optimal power flow: A Lagrange multiplier based approach
    Lei, Xingyu
    Yu, Juan
    Aini, Habaer
    Wu, Wencui
    ENERGY REPORTS, 2022, 8 : 748 - 755
  • [7] Distributed Data-Driven Power Iteration for Strongly Connected Networks
    Gusrialdi, Azwirman
    Qu, Zhihua
    2021 EUROPEAN CONTROL CONFERENCE (ECC), 2021, : 87 - 92
  • [8] Data-Driven Power Flow Linearization: A Regression Approach
    Liu, Yuxiao
    Zhang, Ning
    Wang, Yi
    Yang, Jingwei
    Kang, Chongqing
    IEEE TRANSACTIONS ON SMART GRID, 2019, 10 (03) : 2569 - 2580
  • [9] A Review of Data-Driven Methods for Power Flow Analysis
    Akter, Mahmuda
    Nazaripouya, Hamidreza
    2023 NORTH AMERICAN POWER SYMPOSIUM, NAPS, 2023,
  • [10] Data-Driven Nonparametric Probabilistic Optimal Power Flow: An Integrated Probabilistic Forecasting and Analysis Methodology
    Li, Yunyi
    Wan, Can
    Cao, Zhaojing
    Song, Yonghua
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2023, 38 (06) : 5820 - 5833