More sustainable energy storage: lignin based electrodes with glyoxal crosslinking

被引:34
作者
Chaleawlert-umpon, S. [1 ,2 ]
Liedel, C. [1 ]
机构
[1] Max Planck Inst Colloids & Interfaces, Dept Colloid Chem, Res Campus Golm, D-14476 Potsdam, Germany
[2] Natl Sci & Technol Dev Agcy, Natl Nanotechnol Ctr, Thailand Sci Pk, Pathum Thani 12120, Thailand
关键词
BATTERY WASTE; VALORIZATION; FORMALDEHYDE; EFFICIENCY; CHEMICALS; ALKALINE; BEHAVIOR;
D O I
10.1039/c7ta07686j
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Lignin is a promising material to be used in sustainable energy storage devices. It may act as an active component due to hydroquinone motifs or as a binder in electrodes. While usually it is blended or modified with unsustainable chemicals, we investigate crosslinking with glyoxal as a new route to obtain more benign electrodes. For combining the advantages of high charge (lignin as an active material) and electrode stability (lignin as a binder), we chose a two-step process in which we first form lignin-carbon composites and subsequently crosslink lignin on the carbon. We discuss crosslinking of the material as well as influences on charge storage. Final electrodes benefit from combined faradaic and non-faradaic charge storage and reach a capacity of 80 mA h g(-1) at a discharge rate of 0.2 A g(-1) .
引用
收藏
页码:24344 / 24352
页数:9
相关论文
共 34 条
[1]   Biopolymer hybrid electrodes for scalable electricity storage [J].
Admassie, S. ;
Ajjan, F. N. ;
Elfwing, A. ;
Inganas, O. .
MATERIALS HORIZONS, 2016, 3 (03) :174-185
[2]   Charge storage properties of biopolymer electrodes with (sub)tropical lignins [J].
Admassie, Shimelis ;
Nilsson, Ting Yang ;
Inganas, Olle .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2014, 16 (45) :24681-24684
[3]  
Agarwal U.P., 2010, Lignin and lignans: Advances in chemistry, P103
[4]   High performance PEDOT/lignin biopolymer composites for electrochemical supercapacitors [J].
Ajjan, F. N. ;
Casado, N. ;
Rebis, T. ;
Elfwing, A. ;
Solin, N. ;
Mecerreyes, D. ;
Inganas, O. .
JOURNAL OF MATERIALS CHEMISTRY A, 2016, 4 (05) :1838-1847
[5]   Spectroelectrochemical investigation of redox states in a polypyrrole/lignin composite electrode material [J].
Ajjan, F. N. ;
Jafari, M. J. ;
Rebis, T. ;
Ederth, T. ;
Inganas, O. .
JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (24) :12927-12937
[6]  
Alpert N. L., 1970, IR THEORY PRACTICE I, P184
[7]   Opportunities and challenges in biological lignin valorization [J].
Beckham, Gregg T. ;
Johnson, Christopher W. ;
Karp, Eric M. ;
Salvachua, Davinia ;
Vardon, Derek R. .
CURRENT OPINION IN BIOTECHNOLOGY, 2016, 42 :40-53
[8]   Use of organosolv lignin in phenol-formaldehyde resins for particleboard production -: II.: Particleboard production and properties [J].
Çetin, NS ;
Özmen, N .
INTERNATIONAL JOURNAL OF ADHESION AND ADHESIVES, 2002, 22 (06) :481-486
[9]   Kraft Lignin as Electrode Material for Sustainable Electrochemical Energy Storage [J].
Chaleawlert-umpon, Saowaluk ;
Berthold, Thomas ;
Wang, Xuewan ;
Antonietti, Markus ;
Liedel, Clemens .
ADVANCED MATERIALS INTERFACES, 2017, 4 (23)
[10]   Production of zinc and manganese oxide particles by pyrolysis of alkaline and Zn-C battery waste [J].
Ebin, Burcak ;
Petranikova, Martina ;
Steenari, Britt-Marie ;
Ekberg, Christian .
WASTE MANAGEMENT, 2016, 51 :157-167