Robust H∞ for a class of discrete time fuzzy systems via delta operator approach

被引:46
作者
Yang, Hongjiu [2 ]
Shi, Peng [1 ,3 ]
Zhang, Jinhui [4 ]
Qiu, Jiqing [5 ]
机构
[1] Univ Glamorgan, Dept Comp & Math Sci, Pontypridd CF37 1DL, M Glam, Wales
[2] Yanshan Univ, Inst Elect Engn, Qinhuangdao 066004, Peoples R China
[3] Victoria Univ, Sch Sci & Engn, Melbourne, Vic 8001, Australia
[4] Beijing Univ Chem Technol, Coll Informat Sci & Technol, Beijing 100029, Peoples R China
[5] Hebei Univ Sci & Technol, Coll Sci, Shijiazhuang 050018, Peoples R China
基金
英国工程与自然科学研究理事会; 中国国家自然科学基金;
关键词
T-S fuzzy model; Delta operator system; Norm-bounded uncertainty; Linear matrix inequality (LMI); Time delay; H-infinity state feedback; OUTPUT-FEEDBACK CONTROL; SLIDING-MODE CONTROL; NONLINEAR-SYSTEMS; CONTROL DESIGN; STABILIZATION CONDITIONS; FAULT-DETECTION; STABILITY; DELAY; SHIFT;
D O I
10.1016/j.ins.2011.08.007
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we investigate a robust H-infinity control problem for a class of T-S fuzzy systems with time delays by using delta operator approach. It is known that a better control effect can be obtained by using delta operator approach than using shift operator approach for small sampling periods. Furthermore, the delta operator can unify some previous related continuous and discrete fuzzy systems into fuzzy delta operator system framework. Based on Lyapunov-Krasovskii functionals in delta domain, a new fuzzy H-infinity state feedback controller is presented in terms of linear matrix inequalities. Some experiment results of an ball and beam model on a laboratory-scale setup are presented to illustrate the effectiveness and potential for the developed techniques. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:230 / 245
页数:16
相关论文
共 40 条
[11]   MODEL-REFERENCE ADAPTIVE-CONTROL USING DELTA-OPERATOR [J].
JANECKI, D .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1988, 33 (08) :771-775
[12]   Stability criteria for linear discrete-time systems with interval-like time-varying delay [J].
Jiang, XF ;
Han, QL ;
Yu, X .
ACC: PROCEEDINGS OF THE 2005 AMERICAN CONTROL CONFERENCE, VOLS 1-7, 2005, :2817-2822
[13]   Symmetry study for delta-operator-based 2-D digital filters [J].
Khoo, I. -Hung ;
Reddy, Hari C. ;
Rajan, P. Karivaratha .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2006, 53 (09) :2036-2047
[14]   Further refinement on LMI-based digital redesign: Delta-operator approach [J].
Lee, Ho Jae ;
Park, Jin Bae ;
Joo, Young Hoon .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2006, 53 (06) :473-477
[15]   A polynomial-operator-based DFIIt structure for IIR filters [J].
Li, G .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2004, 51 (03) :147-151
[16]   COMPARATIVE-STUDY OF FINITE WORD-LENGTH EFFECTS IN SHIFT AND DELTA-OPERATOR PARAMETERIZATIONS [J].
LI, G ;
GEVERS, M .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1993, 38 (05) :803-807
[17]   New results on delay-dependent robust stability criteria of uncertain fuzzy systems with state and input delays [J].
Li, Li ;
Liu, Xiaodong .
INFORMATION SCIENCES, 2009, 179 (08) :1134-1148
[18]   Observer-based H∞ fuzzy control design for T-S fuzzy systems with state delays [J].
Lin, Chong ;
Wang, Qing-Guo ;
Lee, Tong Heng ;
He, Yong ;
Chen, Bing .
AUTOMATICA, 2008, 44 (03) :868-874
[19]   IMPROVED FINITE WORD-LENGTH CHARACTERISTICS IN DIGITAL-CONTROL USING DELTA-OPERATORS [J].
MIDDLETON, RH ;
GOODWIN, GC .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1986, 31 (11) :1015-1021
[20]   TRANSFORMATIONS BETWEEN DELTA AND FORWARD SHIFT OPERATOR TRANSFER-FUNCTION MODELS [J].
NEUMAN, CP .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS, 1993, 23 (01) :295-296