A Pre-routing Net Wirelength Prediction Method Using an Optimized Convolutional Neural Network

被引:0
|
作者
Watanabe, Ryota [1 ]
Katsuda, Yuki [1 ]
Zhao, Qian [1 ]
Yoshida, Takaichi [1 ]
机构
[1] Kyushu Inst Technol, Iizuka, Fukuoka, Japan
来源
2019 SEVENTH INTERNATIONAL SYMPOSIUM ON COMPUTING AND NETWORKING WORKSHOPS (CANDARW 2019) | 2019年
关键词
FPGA; Placement; Deep Learning; CNN;
D O I
10.1109/CANDARW.2019.00028
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The total wirelength of a circuit implementation is an important metric to evaluate the quality of an FPGA design flow. The wirelengths of all nets of a circuit are determined by routing, but pre-routing stages like placement can use a wirelength prediction model to direct the generation of a placement solution with a shorter total wirelength for routing. The conventional VPR employs a wirelength prediction model based on the bounding box size and the number of sinks of a net, which works well for an FPGA of a regular 2D array structure. However, new FPGA architectures like 3D-FPGA and hierarchical routing cannot use such a simple model. In this work, we propose a method to build an optimized net wirelength prediction model using a convolutional neural network, which can learn routing features from routed nets without manual tunings. The evaluation results show an optimized CNN model also has higher accuracy than the VPR model.
引用
收藏
页码:115 / 120
页数:6
相关论文
共 50 条
  • [41] Prediction of protein function using a deep convolutional neural network ensemble
    Zacharaki, Evangelia I.
    PEERJ COMPUTER SCIENCE, 2017,
  • [42] Weather radar echo prediction method based on recurrent convolutional neural network
    Shen, Xiajiong
    Meng, Kunying
    Han, Daojun
    Zhai, Kai
    Zhang, Lei
    2021 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2021, : 909 - 916
  • [43] DEEPSEN: a convolutional neural network based method for super-enhancer prediction
    Bu, Hongda
    Hao, Jiaqi
    Gan, Yanglan
    Zhou, Shuigeng
    Guan, Jihong
    BMC BIOINFORMATICS, 2019, 20 (Suppl 15)
  • [44] Toxicity Prediction Method Based on Multi-Channel Convolutional Neural Network
    Yuan, Qing
    Wei, Zhiqiang
    Guan, Xu
    Jiang, Mingjian
    Wang, Shuang
    Zhang, Shugang
    Li, Zhen
    MOLECULES, 2019, 24 (18):
  • [45] Waste classification using AutoEncoder network with integrated feature selection method in convolutional neural network models
    Togacar, Mesut
    Ergen, Burhan
    Comert, Zafer
    MEASUREMENT, 2020, 153
  • [46] Drugs-Protein affinity-score prediction using deep convolutional neural network
    Sharma, Moolchand
    Deswal, Suman
    EXPERT SYSTEMS, 2022, 39 (10)
  • [47] Acute leukemia prediction and classification using convolutional neural network and generative adversarial network
    Lian, Jiunn-Woei
    Wei, Chi-Hung
    Chen, Mu-Yen
    Lin, Ching-Chan
    APPLIED SOFT COMPUTING, 2024, 163
  • [48] Optimized Training for Convolutional Neural Network Using Enhanced Grey Wolf Optimization Algorithm
    Guernine, Akram
    Kimour, Mohamed Tahar
    INFORMATICA-AN INTERNATIONAL JOURNAL OF COMPUTING AND INFORMATICS, 2021, 45 (05): : 731 - 739
  • [49] The Augmentation Data of Retina Image for Blood Vessel Segmentation Using U-Net Convolutional Neural Network Method
    Erwin
    Safmi, Asri
    Desiani, Anita
    Suprihatin, Bambang
    INTERNATIONAL JOURNAL OF COMPUTATIONAL INTELLIGENCE AND APPLICATIONS, 2022, 21 (01)
  • [50] AUTOMATED ACUTE LYMPHOBLASTIC LEUKEMIA CELL CLASSIFICATION USING OPTIMIZED CONVOLUTIONAL NEURAL NETWORK
    Choudhury, Taffazul H.
    Choudhury, Bismita
    SURANAREE JOURNAL OF SCIENCE AND TECHNOLOGY, 2023, 30 (03):