A Pre-routing Net Wirelength Prediction Method Using an Optimized Convolutional Neural Network

被引:0
|
作者
Watanabe, Ryota [1 ]
Katsuda, Yuki [1 ]
Zhao, Qian [1 ]
Yoshida, Takaichi [1 ]
机构
[1] Kyushu Inst Technol, Iizuka, Fukuoka, Japan
来源
2019 SEVENTH INTERNATIONAL SYMPOSIUM ON COMPUTING AND NETWORKING WORKSHOPS (CANDARW 2019) | 2019年
关键词
FPGA; Placement; Deep Learning; CNN;
D O I
10.1109/CANDARW.2019.00028
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The total wirelength of a circuit implementation is an important metric to evaluate the quality of an FPGA design flow. The wirelengths of all nets of a circuit are determined by routing, but pre-routing stages like placement can use a wirelength prediction model to direct the generation of a placement solution with a shorter total wirelength for routing. The conventional VPR employs a wirelength prediction model based on the bounding box size and the number of sinks of a net, which works well for an FPGA of a regular 2D array structure. However, new FPGA architectures like 3D-FPGA and hierarchical routing cannot use such a simple model. In this work, we propose a method to build an optimized net wirelength prediction model using a convolutional neural network, which can learn routing features from routed nets without manual tunings. The evaluation results show an optimized CNN model also has higher accuracy than the VPR model.
引用
收藏
页码:115 / 120
页数:6
相关论文
共 50 条
  • [11] Optimized U-Net convolutional neural network based breast cancer prediction for accuracy increment in big data
    Kirola, Madhu
    Memoria, Minakshi
    Dumka, Ankur
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2023, 35 (09)
  • [12] A deep learning method for prediction of cardiovascular disease using convolutional neural network
    Sajja T.K.
    Kalluri H.K.
    Revue d'Intelligence Artificielle, 2020, 34 (05) : 601 - 606
  • [13] POT-Net: solanum tuberosum (Potato) leaves diseases classification using an optimized deep convolutional neural network
    Kiran Pandiri, D. N.
    Murugan, R.
    Goel, Tripti
    Sharma, Nishant
    Singh, Aditya Kumar
    Sen, Soumya
    Baruah, Tonmoy
    IMAGING SCIENCE JOURNAL, 2022, 70 (06) : 387 - 403
  • [14] Brain Age Prediction Using a Lightweight Convolutional Neural Network
    Eltashani, Fatma
    Parreno-Centeno, Mario
    Cole, James H.
    Papa, Joao Paulo
    Costen, Fumie
    IEEE ACCESS, 2025, 13 : 6750 - 6763
  • [15] Disruption prediction using a full convolutional neural network on EAST
    Guo, B. H.
    Shen, B.
    Chen, D. L.
    Rea, C.
    Granetz, R. S.
    Huang, Y.
    Zeng, L.
    Zhang, H.
    Qian, J. P.
    Sun, Y. W.
    Xiao, B. J.
    PLASMA PHYSICS AND CONTROLLED FUSION, 2021, 63 (02)
  • [16] Software Defect Prediction via Convolutional Neural Network
    Li, Jian
    He, Pinjia
    Zhu, Jieming
    Lyu, Michael R.
    2017 IEEE INTERNATIONAL CONFERENCE ON SOFTWARE QUALITY, RELIABILITY AND SECURITY (QRS), 2017, : 318 - 328
  • [17] A Study on the Prediction Method for Spatiotemporal Channel Parameters by Convolutional Neural Network using a Spherical Image
    Ito, Satosih
    Hayashi, Takahiro
    2021 IEEE 32ND ANNUAL INTERNATIONAL SYMPOSIUM ON PERSONAL, INDOOR AND MOBILE RADIO COMMUNICATIONS (PIMRC), 2021,
  • [18] Texture classification using convolutional neural network optimized with whale optimization algorithm
    Dixit, Ujjawal
    Mishra, Apoorva
    Shukla, Anupam
    Tiwari, Ritu
    SN APPLIED SCIENCES, 2019, 1 (06):
  • [19] Texture classification using convolutional neural network optimized with whale optimization algorithm
    Ujjawal Dixit
    Apoorva Mishra
    Anupam Shukla
    Ritu Tiwari
    SN Applied Sciences, 2019, 1
  • [20] Recognition of Industrial Spare Parts Using an Optimized Convolutional Neural Network Model
    Department of Computer Science and Engineering, Amrita School of Computing, Amrita Vishwa Vidyapeetham, Chennai
    601103, India
    不详
    H91 TK33, Ireland
    Information, 12