Efficient Large-Scale Multiobjective Optimization Based on a Competitive Swarm Optimizer

被引:304
作者
Tian, Ye [1 ]
Zheng, Xiutao [2 ]
Zhang, Xingyi [2 ]
Jin, Yaochu [3 ,4 ]
机构
[1] Anhui Univ, Inst Phys Sci & Informat Technol, Hefei 230601, Peoples R China
[2] Anhui Univ, Sch Comp Sci & Technol, Inst Bioinspired Intelligence & Min Knowledge, Hefei 230601, Peoples R China
[3] Univ Surrey, Dept Comp Sci, Guildford GU2 7XH, Surrey, England
[4] Southern Univ Sci & Technol, Dept Comp Sci & Engn, Shenzhen 518055, Peoples R China
基金
中国国家自然科学基金;
关键词
Optimization; Clustering algorithms; Particle swarm optimization; Computer science; Sociology; Statistics; Trajectory; Competitive swarm optimizer (CSO); evolutionary multiobjective optimization; large-scale multiobjective optimization problem; particle swarm optimization (PSO); EVOLUTIONARY ALGORITHM; MECHANISM;
D O I
10.1109/TCYB.2019.2906383
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
There exist many multiobjective optimization problems (MOPs) containing a large number of decision variables in real-world applications, which are known as large-scale MOPs. Due to the ineffectiveness of existing operators in finding optimal solutions in a huge decision space, some decision variable division-based algorithms have been tailored for improving the search efficiency in solving large-scale MOPs. However, these algorithms will encounter difficulties when solving problems with complicated landscapes, as the decision variable division is likely to be inaccurate and time consuming. In this paper, we propose a competitive swarm optimizer (CSO)-based efficient search for solving large-scale MOPs. The proposed algorithm adopts a new particle updating strategy that suggests a two-stage strategy to update position, which can highly improve the search efficiency. The experimental results on large-scale benchmark MOPs and an application example demonstrate the superiority of the proposed algorithm over several state-of-the-art multiobjective evolutionary algorithms, including problem transformation-based algorithm, decision variable clustering-based algorithm, particle swarm optimization algorithm, and estimation of distribution algorithm.
引用
收藏
页码:3696 / 3708
页数:13
相关论文
共 69 条
[11]   Test Problems for Large-Scale Multiobjective and Many-Objective Optimization [J].
Cheng, Ran ;
Jin, Yaochu ;
Olhofer, Markus ;
Sendhoff, Bernhard .
IEEE TRANSACTIONS ON CYBERNETICS, 2017, 47 (12) :4108-4121
[12]   A Reference Vector Guided Evolutionary Algorithm for Many-Objective Optimization [J].
Cheng, Ran ;
Jin, Yaochu ;
Olhofer, Markus ;
Sendhoff, Bernhard .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2016, 20 (05) :773-791
[13]   A Multiobjective Evolutionary Algorithm Using Gaussian Process-Based Inverse Modeling [J].
Cheng, Ran ;
Jin, Yaochu ;
Narukawa, Kaname ;
Sendhoff, Bernhard .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2015, 19 (06) :838-856
[14]   A Competitive Swarm Optimizer for Large Scale Optimization [J].
Cheng, Ran ;
Jin, Yaochu .
IEEE TRANSACTIONS ON CYBERNETICS, 2015, 45 (02) :191-204
[15]  
Coello CAC, 2002, IEEE C EVOL COMPUTAT, P1051, DOI 10.1109/CEC.2002.1004388
[16]   MO-TRIBES, an adaptive multiobjective particle swarm optimization algorithm [J].
Cooren, Yann ;
Clerc, Maurice ;
Siarry, Patrick .
COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2011, 49 (02) :379-400
[17]   Normal-boundary intersection: A new method for generating the Pareto surface in nonlinear multicriteria optimization problems [J].
Das, I ;
Dennis, JE .
SIAM JOURNAL ON OPTIMIZATION, 1998, 8 (03) :631-657
[18]  
Deb K, 2004, ADV INFO KNOW PROC, P105
[19]   A fast and elitist multiobjective genetic algorithm: NSGA-II [J].
Deb, K ;
Pratap, A ;
Agarwal, S ;
Meyarivan, T .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2002, 6 (02) :182-197
[20]  
Deb K., 1995, Complex Systems, V9, P115