Multifractal dimensions of product measures

被引:25
|
作者
Olsen, L
机构
[1] University of St. Andrews, Department of Mathematics, North Haugh, St. Andrews
关键词
D O I
10.1017/S0305004100001675
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the multifractal structure of product measures. For a Borel probability measure mu and q, t is an element of R, let H-mu(q,t) and P-mu(q,t) denote the multifractal Hausdorff measure and the multifractal packing measure introduced in [011] Let mu be a Borel probability merasure on R(k) and let v be a Borel probability measure on R(l). Fix q, s, t is an element of R. We prove that there exists a number c > 0 such that integral H-mu(q,s) (H-y) dH(nu)(q,t) (y) less than or equal to cH(mu x nu)(q, s+t) (H), H-mu x nu(q, s+t) (E x F) less than or equal to cH(mu)(q,s) (E) P-nu(q,t) (F), integral H-mu(q,s) (H-y) dP(nu)(q,t) (y) less than or equal to cP(mu x nu)(q, s+t) (H), P-mu x nu(q, s+t) (E x F) less than or equal to cP(mu)(q, s) (E) P-nu(q, t) (F), for E subset of or equal to R(k), F subset of or equal to R(l) and H subset of or equal to H subset of or equal to R(k+l) provided that mu and nu satisfy the so-called Pederer condition. Using these inequalities we give upper and lower bounds for the multifractal spectrum of mu + nu in terms of the multifractal spectra of mu and nu.
引用
收藏
页码:709 / 734
页数:26
相关论文
共 50 条
  • [31] CONSISTENT SCALING OF MULTIFRACTAL MEASURES - MULTIFRACTAL SPATIAL CORRELATIONS
    PLATT, DE
    FAMILY, F
    PHYSICAL REVIEW E, 1993, 47 (04): : 2281 - 2288
  • [32] Multiperiodic multifractal martingale measures
    Barral, J
    Coppens, MO
    Mandelbrot, BB
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2003, 82 (12): : 1555 - 1589
  • [33] Multifractal Geometry of Slices of Measures
    Selmi, Bilel
    ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2021, 40 (02): : 237 - 253
  • [34] Convolutions and the Geometry of multifractal measures
    Falconer, KJ
    O'Neil, TC
    MATHEMATISCHE NACHRICHTEN, 1999, 204 : 61 - 82
  • [35] CLUSTERING PARADIGMS AND MULTIFRACTAL MEASURES
    MARTINEZ, VJ
    JONES, BJT
    DOMINGUEZTENREIRO, R
    VANDEWEYGAERT, R
    ASTROPHYSICAL JOURNAL, 1990, 357 (01): : 50 - 61
  • [36] Multifractal spectrum of multinomial measures
    Okada, T
    Sekiguchi, T
    Shiota, Y
    PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 1997, 73 (07) : 123 - 125
  • [37] Multifractal measures of image quality
    Langi, AZR
    Soemintapura, K
    Mengko, TL
    Kinsner, W
    ICICS - PROCEEDINGS OF 1997 INTERNATIONAL CONFERENCE ON INFORMATION, COMMUNICATIONS AND SIGNAL PROCESSING, VOLS 1-3: THEME: TRENDS IN INFORMATION SYSTEMS ENGINEERING AND WIRELESS MULTIMEDIA COMMUNICATIONS, 1997, : 726 - 730
  • [38] MULTIFRACTAL MEASURES, ESPECIALLY FOR THE GEOPHYSICIST
    MANDELBROT, BB
    PURE AND APPLIED GEOPHYSICS, 1989, 131 (1-2) : 5 - 42
  • [39] Revisiting the multifractal analysis of measures
    Ben Nasr, Fathi
    Peyriere, Jacques
    REVISTA MATEMATICA IBEROAMERICANA, 2013, 29 (01) : 315 - 328
  • [40] Multidimensional Multifractal Random Measures
    Rhodes, Remi
    Vargas, Vincent
    ELECTRONIC JOURNAL OF PROBABILITY, 2010, 15 : 241 - 258