Multifractal dimensions of product measures

被引:25
|
作者
Olsen, L
机构
[1] University of St. Andrews, Department of Mathematics, North Haugh, St. Andrews
关键词
D O I
10.1017/S0305004100001675
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the multifractal structure of product measures. For a Borel probability measure mu and q, t is an element of R, let H-mu(q,t) and P-mu(q,t) denote the multifractal Hausdorff measure and the multifractal packing measure introduced in [011] Let mu be a Borel probability merasure on R(k) and let v be a Borel probability measure on R(l). Fix q, s, t is an element of R. We prove that there exists a number c > 0 such that integral H-mu(q,s) (H-y) dH(nu)(q,t) (y) less than or equal to cH(mu x nu)(q, s+t) (H), H-mu x nu(q, s+t) (E x F) less than or equal to cH(mu)(q,s) (E) P-nu(q,t) (F), integral H-mu(q,s) (H-y) dP(nu)(q,t) (y) less than or equal to cP(mu x nu)(q, s+t) (H), P-mu x nu(q, s+t) (E x F) less than or equal to cP(mu)(q, s) (E) P-nu(q, t) (F), for E subset of or equal to R(k), F subset of or equal to R(l) and H subset of or equal to H subset of or equal to R(k+l) provided that mu and nu satisfy the so-called Pederer condition. Using these inequalities we give upper and lower bounds for the multifractal spectrum of mu + nu in terms of the multifractal spectra of mu and nu.
引用
收藏
页码:709 / 734
页数:26
相关论文
共 50 条
  • [21] PROJECTIONS OF MULTIFRACTAL MEASURES
    RADONS, G
    PHYSICA A, 1992, 191 (1-4): : 532 - 535
  • [22] MULTIFRACTAL ANALYSIS OF MEASURES
    NASR, FB
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1994, 319 (08): : 807 - 810
  • [23] ON THE MULTIFRACTAL ANALYSIS OF MEASURES
    BROWN, G
    MICHON, G
    PEYRIERE, J
    JOURNAL OF STATISTICAL PHYSICS, 1992, 66 (3-4) : 775 - 790
  • [24] Topological dimensions and multifractal Renyi dimensions of Polish spaces: a multifractal Szpilrajn type theorem
    Olsen, L.
    MONATSHEFTE FUR MATHEMATIK, 2008, 155 (02): : 191 - 203
  • [25] MULTIFRACTAL DIMENSIONS IN QCD CASCADES
    GUSTAFSON, G
    NILSSON, A
    ZEITSCHRIFT FUR PHYSIK C-PARTICLES AND FIELDS, 1991, 52 (03): : 533 - 541
  • [26] Multifractal Dimensions for Branched Growth
    Halsey, T. C.
    Honda, K.
    Duplantier, B.
    Journal of Statistical Physics, 85 (5-6):
  • [27] On the generalized dimensions of multifractal eigenstates
    Mendez-Bermudez, J. A.
    Alcazar-Lopez, A.
    Varga, Imre
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2014,
  • [28] Multifractal dimensions for branched growth
    Halsey, TC
    Honda, K
    Duplantier, B
    JOURNAL OF STATISTICAL PHYSICS, 1996, 85 (5-6) : 681 - 743
  • [29] MULTIFRACTAL ANALYSIS OF DIMENSIONS AND ENTROPIES
    Takens, F.
    Verbitski, E.
    REGULAR & CHAOTIC DYNAMICS, 2000, 5 (04): : 361 - 382
  • [30] Topological dimensions and multifractal Rényi dimensions of Polish spaces: a multifractal Szpilrajn type theorem
    L. Olsen
    Monatshefte für Mathematik, 2008, 155 : 191 - 203