SDE solutions, at small times, driven by fractional Brownian motions

被引:4
|
作者
Baudoin, F [1 ]
Coutin, L [1 ]
机构
[1] Univ Toulouse 3, Lab Probabil & Stat, F-31062 Toulouse, France
关键词
D O I
10.1016/j.crma.2005.05.010
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study, in small times, the properties of the operator P-t(f)(x) = E(f (X-t(x))), where (X-t(x))t >= 0 is the solution of a stochastic differential equation driven by fractional Brownian motions with the same Hurst parameter H >1/4.
引用
收藏
页码:39 / 42
页数:4
相关论文
共 50 条
  • [41] Quadratic variations and estimation of the hurst index of the solution of SDE driven by a fractional Brownian motion
    K. Kubilius
    D. Melichov
    Lithuanian Mathematical Journal, 2010, 50 : 401 - 417
  • [42] Mutual intersection for rough differential systems driven by fractional Brownian motions
    Ouyang, Cheng
    Shi, Yinghui
    Wu, Dongsheng
    STATISTICS & PROBABILITY LETTERS, 2018, 135 : 83 - 91
  • [43] Almost Sure Averaging for Evolution Equations Driven by Fractional Brownian Motions
    Pei, B.
    Schmalfuss, B.
    Xu, Y.
    SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2024, 23 (04): : 2807 - 2852
  • [44] Rate of convergence of Euler approximation of time-dependent mixed SDEs driven by Brownian motions and fractional Brownian motions
    Liu, Weiguo
    Jiang, Yan
    Li, Zhi
    AIMS MATHEMATICS, 2020, 5 (03): : 2163 - 2195
  • [45] Optimal tracking for bilinear stochastic system driven by fractional Brownian motions
    Yaozhong Hu
    Changli Yang
    Journal of Systems Science and Complexity, 2012, 25 : 238 - 248
  • [46] Maximum Principle for General Controlled Systems Driven by Fractional Brownian Motions
    Yuecai Han
    Yaozhong Hu
    Jian Song
    Applied Mathematics & Optimization, 2013, 67 : 279 - 322
  • [47] OPTIMAL TRACKING FOR BILINEAR STOCHASTIC SYSTEM DRIVEN BY FRACTIONAL BROWNIAN MOTIONS
    Yaozhong HU
    Changli YANG
    JournalofSystemsScience&Complexity, 2012, 25 (02) : 238 - 248
  • [48] Fractal dimensions of rough differential equations driven by fractional Brownian motions
    Lou, Shuwen
    Ouyang, Cheng
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2016, 126 (08) : 2410 - 2429
  • [49] Operators associated with a stochastic differential equation driven by fractional Brownian motions
    Baudoin, Fabrice
    Coutin, Laure
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2007, 117 (05) : 550 - 574
  • [50] Smoothing effect of rough differential equations driven by fractional Brownian motions
    Baudoin, Fabrice
    Ouyang, Cheng
    Zhang, Xuejing
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2016, 52 (01): : 412 - 428