Thermodynamic and kinetic behavior of low-alloy steels: An atomic level study using an Fe-Mn-Si-C modified embedded atom method (MEAM) potential

被引:24
作者
Aslam, I. [1 ,2 ]
Baskes, M. I. [3 ,4 ]
Dickel, D. E. [2 ]
Adibi, S. [1 ,2 ]
Li, B. [5 ]
Rhee, H. [1 ,2 ]
Zaeem, M. Asle [6 ,7 ]
Horstemeyer, M. F. [8 ]
机构
[1] Mississippi State Univ, Dept Mech Engn, Starkville, MS 39762 USA
[2] Mississippi State Univ, Ctr Adv Vehicular Syst, Starkville, MS 39759 USA
[3] Mississippi State Univ, Off Res & Econ Dev, Starkville, MS 39762 USA
[4] Los Alamos Natl Lab, Los Alamos, NM 87545 USA
[5] Univ Nevada, Dept Chem & Mat Engn, Reno, NV 89557 USA
[6] Missouri Univ Sci & Technol, Dept Mat Sci & Engn, Rolla, MO 65409 USA
[7] Colorado Sch Mines, Dept Mech Engn, Golden, CO 80401 USA
[8] Liberty Univ, Sch Engn Dean, Lynchburg, VA 24515 USA
基金
美国国家科学基金会;
关键词
MEAM; First-principles; Iron alloys; Manganese; Silicon; TRANSFORMATION-INDUCED PLASTICITY; METHOD INTERATOMIC POTENTIALS; NANOCRYSTAL ALPHA-IRON; ELECTRONIC-PROPERTIES; VACANCY-FORMATION; DYNAMICS; SIMULATIONS; MANGANESE; LATTICE; FORMABILITY;
D O I
10.1016/j.mtla.2019.100473
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A quaternary element Modified Embedded Atom Method (MEAM) potential comprising Fe, Mn, Si, and C is developed by employing a hierarchical multiscale modeling paradigm to simulate low-alloy steels. Experimental information alongside first-principles calculations based on Density Functional Theory served as calibration data to upscale and develop the MEAM potential. For calibrating the single element potentials, the cohesive energy, lattice parameters, elastic constants, and vacancy and interstitial formation energies are used as target data. The heat of formation and elastic constants of binary compounds along with substitutional and interstitial formation energies serve as binary potential calibration data, while substitutional and interstitial pair binding energies aid in developing the ternary potential. Molecular dynamics simulations employing the developed potentials predict the thermal expansion coefficient, heat capacity, self-diffusion coefficients, and stacking fault energy for steel alloys comparable to those reported in the literature.
引用
收藏
页数:13
相关论文
共 89 条
[1]  
[Anonymous], 1957, AM I PHYS HDB
[2]  
[Anonymous], 2004, INTRO SOLID STATE PH
[3]  
[Anonymous], 1988, Transit. Met. Alloys
[4]   The anisotropy of hexagonal close-packed and liquid interface free energy using molecular dynamics simulations based on modified embedded-atom method [J].
Asadi, Ebrahim ;
Zaeem, Mohsen Asle .
ACTA MATERIALIA, 2016, 107 :337-344
[5]   Two-phase solid-liquid coexistence of Ni, Cu, and Al by molecular dynamics simulations using the modified embedded-atom method [J].
Asadi, Ebrahim ;
Zaeem, Mohsen Asle ;
Nouranian, Sasan ;
Baskes, Michael I. .
ACTA MATERIALIA, 2015, 86 :169-181
[6]   Quantitative modeling of the equilibration of two-phase solid-liquid Fe by atomistic simulations on diffusive time scales [J].
Asadi, Ebrahim ;
Zaeem, Mohsen Asle ;
Nouranian, Sasan ;
Baskes, Michael I. .
PHYSICAL REVIEW B, 2015, 91 (02)
[7]   Phase-Field Crystal Model for Fe Connected to MEAM Molecular Dynamics Simulations [J].
Asadi, Ebrahim ;
Zaeem, Mohsen Asle ;
Baskes, Michael I. .
JOM, 2014, 66 (03) :429-436
[8]  
Barrett C., 1980, STRUCTURE METALS CRY
[9]   The MEAM parameter calibration tool: an explicit methodology for hierarchical bridging between ab initio and atomistic scales [J].
Barrett C.D. ;
Carino R.L. .
Integrating Materials and Manufacturing Innovation, 2016, 5 (01) :177-191
[10]   ATOMISTIC CALCULATIONS OF COMPOSITE INTERFACES [J].
BASKES, MI ;
ANGELO, JE ;
BISSON, CL .
MODELLING AND SIMULATION IN MATERIALS SCIENCE AND ENGINEERING, 1994, 2 (3A) :505-518