Thinning intensity but not replanting different species affects soil N2O and CH4 fluxes in Cunninghamia lanceolata plantation

被引:8
|
作者
Hu, Yanjing
Zhang, Hui
Lv, Yang
Ying, Binbin
Wang, Yixiang
机构
[1] Zhejiang A&F Univ, State Key Lab Subtrop Silviculture, Hangzhou 311300, Peoples R China
[2] Zhejiang A&F Univ, Key Lab Carbon Cycling Forest Ecosyst & Carbon Se, Hangzhou 311300, Peoples R China
[3] Zhejiang A&F Univ, Coll Environm & Resource Sci, Linan, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Global warming potential; GWP; Greenhouse gas emission; Forest management; Soil environmental factors; Chinese fir; GREENHOUSE-GAS EMISSIONS; NITROUS-OXIDE PRODUCTION; LAND-USE CHANGE; FOREST SOIL; CARBON-DIOXIDE; MICROBIAL BIOMASS; METHANE FLUXES; MIXED STANDS; ORGANIC-MATTER; SPRUCE FOREST;
D O I
10.1016/j.scitotenv.2022.153458
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Thinning and replanting are effective forest management measures to improve the stand structure and species composition of artificial forests. However, the effects of thinning and replanting on soil N2O and CH4 fluxes and their associations with changes in soil environment factors have been poorly understood in plantation forests. A 36-month field experiment was conducted to elucidate the effects of thinning and replanting different species on soil N2O and CH4 fluxes and related environmental factors in Cunninghamia lanceolata plantation on shallow soil. The experiment consisted of five treatments, uncut control (CK), moderate thinning + replanting evergreen seedlings (MTE), moderate thinning + replanting deciduous seedlings (MTD), heavy thinning + replanting evergreen seedlings (HTE), heavy thinning + replanting deciduous seedlings (HTD). Compared with the control, moderate and heavy thinning increased cumulative N2O emissions by 12.4% and 21.4%, respectively, and reduced CH4 cumulative uptake by 35.4% and 38.8%, respectively. However, the effects on soil N2O and CH4 fluxes replanting deciduous or evergreen seedlings were insignificant. The results showed that thinning increased N2O emissions and decreased CH4 uptake due to the increased soil temperature, labile C and N concentrations. Soil temperature was the dominant factor, and mineral N was a contributing factor affecting N2O and CH4 fluxes. The study concludes that thinning increased the global warming potential with N2O contributing more than CH4 (113.5%: -13.5%). Our findings highlight that thinning increased N2O emissions and decreased CH4 uptake with the increasing intensity and the replanting had no different effects between deciduous and evergreen seedlings on the fluxes of N2O and CH4 during the early years following thinning.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Combining two complementary micrometeorological methods to measure CH4 and N2O fluxes over pasture
    Laubach, Johannes
    Barthel, Matti
    Fraser, Anitra
    Hunt, John E.
    Griffith, David W. T.
    BIOGEOSCIENCES, 2016, 13 (04) : 1309 - 1327
  • [32] The impact of ploughing intensively managed temperate grasslands on N2O, CH4 and CO2 fluxes
    Drewer, J.
    Anderson, M.
    Levy, P. E.
    Scholtes, B.
    Helfter, C.
    Parker, J.
    Rees, R. M.
    Skiba, U. M.
    PLANT AND SOIL, 2017, 411 (1-2) : 193 - 208
  • [33] Fluxes of N2O, CH4 and CO2 on afforested boreal agricultural soils
    Marja Maljanen
    Jyrki Hytönen
    Pertti J. Martikainen
    Plant and Soil, 2001, 231 : 113 - 121
  • [34] Fluxes of N2O, CH4 and CO2 on afforested boreal agricultural soils
    Maljanen, M
    Hytönen, J
    Martikainen, PJ
    PLANT AND SOIL, 2001, 231 (01) : 113 - 121
  • [35] Microbial mechanisms of interactive climate-driven changes in soil N2O and CH4 fluxes: A global meta-analysis
    Shakoor, Awais
    Pendall, Elise
    Macdonald, Catriona A.
    JOURNAL OF ENVIRONMENTAL MANAGEMENT, 2025, 376
  • [36] The Impact of Nitrogen Placement and Tillage on NO, N2O, CH4 and CO2 Fluxes from a Clay Loam Soil
    Xuejun J. Liu
    Arvin R. Mosier
    Ardell D. Halvorson
    Fusuo S. Zhang
    Plant and Soil, 2006, 280 : 177 - 188
  • [37] Land inclination controls CO2 and N2O fluxes, but not CH4 uptake, in a temperate upland forest soil
    Gillespie, Lauren M.
    Triches, Nathalie Y.
    Abalos, Diego
    Finke, Peter
    Zechmeister-Boltenstern, Sophie
    Glatzel, Stephan
    Diaz-Pines, Eugenio
    SOIL, 2023, 9 (02) : 517 - 531
  • [38] Temporal and spatial variations of soil CO2, CH4 and N2O fluxes at three differently managed grasslands
    Imer, D.
    Merbold, L.
    Eugster, W.
    Buchmann, N.
    BIOGEOSCIENCES, 2013, 10 (09) : 5931 - 5945
  • [39] The Effect of Land-Use Change on Soil CH4 and N2O Fluxes: A Global Meta-Analysis
    M. D. McDaniel
    D. Saha
    M. G. Dumont
    M. Hernández
    M. A. Adams
    Ecosystems, 2019, 22 : 1424 - 1443
  • [40] The impact of nitrogen placement and tillage on NO, N2O, CH4 and CO2 fluxes from a clay loam soil
    Liu, XJ
    Mosier, AR
    Halvorson, AD
    Zhang, FS
    PLANT AND SOIL, 2006, 280 (1-2) : 177 - 188