Multimodal Meta-Analysis of 1,494 Hepatocellular Carcinoma Samples Reveals Significant Impact of Consensus Driver Genes on Phenotypes

被引:32
作者
Chaudhary, Kumardeep [1 ]
Poirion, Olivier B. [1 ]
Lu, Liangqun [1 ,2 ]
Huang, Sijia [1 ,2 ]
Ching, Travers [1 ,2 ]
Garmire, Lana X. [1 ,2 ,3 ]
机构
[1] Univ Hawaii, Canc Ctr, Epidemiol Program, Honolulu, HI 96822 USA
[2] Univ Hawaii Manoa, Mol Biosci & Bioengn Grad Program, Honolulu, HI 96822 USA
[3] Univ Michigan, Dept Computat Med & Bioinformat, Ann Arbor, MI 48109 USA
关键词
MICRORNA TARGET PREDICTION; MUTATIONAL LANDSCAPE; RECURRENT MUTATIONS; CANCER; EPIDEMIOLOGY; EXPRESSION; MODELS; REGRESSION; PATHWAYS; PACKAGE;
D O I
10.1158/1078-0432.CCR-18-0088
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Although driver genes in hepatocellular carcinoma (HCC) have been investigated in various previous genetic studies, prevalence of key driver genes among heterogeneous populations is unknown. Moreover, the phenotypic associations of these driver genes are poorly understood. This report aims to reveal the phenotypic impacts of a group of consensus driver genes in HCC. We used MutSigCV and OncodriveFM modules implemented in the IntOGen pipeline to identify consensus driver genes across six HCC cohorts comprising 1,494 samples in total. To access their global impacts, we used The Cancer Genome Atlas (TCGA) mutations and copy-number variations to predict the transcriptomics data, under generalized linear models. We further investigated the associations of the consensus driver genes to patient survival, age, gender, race, and risk factors. We identify 10 consensus driver genes across six HCC cohorts in total. Integrative analysis of driver mutations, copy-number variations, and transcriptomic data reveals that these consensus driver mutations and their copy-number variations are associated with a majority (62.5%) of the mRNA transcriptome but only a small fraction (8.9%) of miRNAs. Genes associated with TP53, CTNNB1, and ARID1A mutations contribute to the tripod of most densely connected pathway clusters. These driver genes are significantly associated with patients' overall survival. Some driver genes are significantly linked to HCC gender (CTNNB1, ALB, TP53, and AXIN1), race (TP53 and CDKN2A), and age (RB1) disparities. This study prioritizes a group of consensus drivers in HCC, which collectively show vast impacts on the phenotypes. These driver genes may warrant as valuable therapeutic targets of HCC.
引用
收藏
页码:463 / 472
页数:10
相关论文
共 64 条
  • [1] Genomic Portrait of Resectable Hepatocellular Carcinomas: Implications of RB1 and FGF19 Aberrations for Patient Stratification
    Ahn, Sung-Min
    Jang, Se Jin
    Shim, Ju Hyun
    Kim, Deokhoon
    Hong, Seung-Mo
    Sung, Chang Ohk
    Baek, Daehyun
    Haq, Farhan
    Ansari, Adnan Ahmad
    Lee, Sun Young
    Chun, Sung-Min
    Choi, Seongmin
    Choi, Hyun-Jeung
    Kim, Jongkyu
    Kim, Sukjun
    Hwang, Shin
    Lee, Young-Joo
    Lee, Jong-eun
    Jung, Wang-rim
    Jang, Hye Yoon
    Yang, Eunho
    Sung, Wing-Kin
    Lee, Nikki P.
    Mao, Mao
    Lee, Charles
    Zucman-Rossi, Jessica
    Yu, Eunsil
    Lee, Han Chu
    Kong, Gu
    [J]. HEPATOLOGY, 2014, 60 (06) : 1972 - 1982
  • [2] Toward understanding and exploiting tumor heterogeneity
    Alizadeh, Ash A.
    Aranda, Victoria
    Bardelli, Alberto
    Blanpain, Cedric
    Bock, Christoph
    Borowski, Christine
    Caldas, Carlos
    Califano, Andrea
    Doherty, Michael
    Elsner, Markus
    Esteller, Manel
    Fitzgerald, Rebecca
    Korbel, Jan O.
    Lichter, Peter
    Mason, Christopher E.
    Navin, Nicholas
    Pe'er, Dana
    Polyak, Kornelia
    Roberts, Charles W. M.
    Siu, Lillian
    Snyder, Alexandra
    Stower, Hannah
    Swanton, Charles
    Verhaak, Roel G. W.
    Zenklusen, Jean C.
    Zuber, Johannes
    Zucman-Rossi, Jessica
    [J]. NATURE MEDICINE, 2015, 21 (08) : 846 - 853
  • [3] Comprehensive and Integrative Genomic Characterization of Hepatocellular Carcinoma
    Ally, Adrian
    Balasundaram, Miruna
    Carlsen, Rebecca
    Chuah, Eric
    Clarke, Amanda
    Dhalla, Noreen
    Holt, Robert A.
    Jones, Steven J. M.
    Lee, Darlene
    Ma, Yussanne
    Marra, Marco A.
    Mayo, Michael
    Moore, Richard A.
    Mungall, Andrew J.
    Schein, Jacqueline E.
    Sipahimalani, Payal
    Tam, Angela
    Thiessen, Nina
    Cheung, Dorothy
    Wong, Tina
    Brooks, Denise
    Robertson, A. Gordon
    Bowlby, Reanne
    Mungall, Karen
    Sadeghi, Sara
    Xi, Liu
    Covington, Kyle
    Shinbrot, Eve
    Wheeler, David A.
    Gibbs, Richard A.
    Donehower, Lawrence A.
    Wang, Linghua
    Bowen, Jay
    Gastier-Foster, Julie M.
    Gerken, Mark
    Helsel, Carmen
    Leraas, Kristen M.
    Lichtenberg, Tara M.
    Ramirez, Nilsa C.
    Wise, Lisa
    Zmuda, Erik
    Gabriel, Stacey B.
    Meyerson, Matthew
    Cibulskis, Carrie
    Murray, Bradley A.
    Shih, Juliann
    Beroukhim, Rameen
    Cherniack, Andrew D.
    Schumacher, Steven E.
    Saksena, Gordon
    [J]. CELL, 2017, 169 (07) : 1327 - +
  • [4] Altman A, 2005, P 6 ACM C EL COMM, P1
  • [5] [Anonymous], DIG DIS INTERV
  • [6] [Anonymous], DATABASE OXFORD
  • [7] [Anonymous], LIVER INT
  • [8] [Anonymous], 2017, impute: impute: Imputation for microarray data
  • [9] Deep Learning-Based Multi-Omics Integration Robustly Predicts Survival in Liver Cancer
    Chaudharyl, Kumardeep
    Poirionl, Olivier B.
    Lu, Liangqun
    Garmire, Lana X.
    [J]. CLINICAL CANCER RESEARCH, 2018, 24 (06) : 1248 - 1259
  • [10] Identification of Driver Genes in Hepatocellular Carcinoma by Exome Sequencing
    Cleary, Sean P.
    Jeck, William R.
    Zhao, Xiaobei
    Chen, Kui
    Selitsky, Sara R.
    Savich, Gleb L.
    Tan, Ting-Xu
    Wu, Michael C.
    Getz, Gad
    Lawrence, Michael S.
    Parker, Joel S.
    Li, Jinyu
    Powers, Scott
    Kim, Hyeja
    Fischer, Sandra
    Guindi, Maha
    Ghanekar, Anand
    Chiang, Derek Y.
    [J]. HEPATOLOGY, 2013, 58 (05) : 1693 - 1702