Snow as a foam of ice: plasticity, fracture and the brittle-to-ductile transition

被引:0
|
作者
Kirchner, HOK
Michot, G
Narita, H
Suzuki, T
机构
[1] Univ Paris 11, Inst Sci Mat, F-91405 Orsay, France
[2] Ecole Mines, Phys Mat Lab, F-54042 Nancy, France
[3] Hokkaido Univ, Inst Low Temp Sci, Sapporo, Hokkaido 0608628, Japan
[4] Univ Tokyo, Inst Ind Sci, Minato Ku, Tokyo 1068558, Japan
来源
PHILOSOPHICAL MAGAZINE A-PHYSICS OF CONDENSED MATTER STRUCTURE DEFECTS AND MECHANICAL PROPERTIES | 2001年 / 81卷 / 09期
关键词
D O I
10.1080/01418610108217141
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
At strain rates lower than 10(4) s(1), snow deforms plastically and fractures in a ductile manner; at higher strain rates it is brittle. The brittle-to-ductile transition has an activation energy of 0.6 +/- 0.1 eV. Plasticity preceding fracture is characterized by an activation energy of 0.6 +/- 0.05 eV for temperatures below -6 degreesC, and about 2.7 +/- 0.4 eV above. The basic deformation mechanism of snow, an ice foam, is power-law creep of ice. As in silicon, the activation energy of the brittle-to-ductile transition is the lowest of the activation energies of all deformation processes available, but in ice these are the same, 0.6 eV, for dislocation glide, diffusion and sublimation.
引用
收藏
页码:2161 / 2181
页数:21
相关论文
共 50 条
  • [31] Brittle-to-ductile transition in NiAl single crystal
    Ebrahimi, F
    Shrivastava, S
    ACTA MATERIALIA, 1998, 46 (05) : 1493 - 1502
  • [32] Athermal brittle-to-ductile transition in amorphous solids
    Dauchot, Olivier
    Karmakar, Smarajit
    Procaccia, Itamar
    Zylberg, Jacques
    PHYSICAL REVIEW E, 2011, 84 (04):
  • [33] Brittle-to-Ductile Transition of Sulfonated Polystyrene Ionomers
    Liu, Shuang
    Cao, Xiao
    Huang, Chongwen
    Weiss, R. A.
    Zhang, Zhijie
    Chen, Quan
    ACS MACRO LETTERS, 2021, 10 (04) : 503 - 509
  • [34] Brittle-to-ductile transition in multiphase NiAl alloy
    Cui, CY
    Chen, YX
    Guo, JT
    Qi, YH
    Ye, HQ
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2002, 325 (1-2): : 186 - 193
  • [35] Brittle-to-Ductile Transition in Metallic Glass Nanowires
    Sopu, D.
    Foroughi, A.
    Stoica, M.
    Eckert, J.
    NANO LETTERS, 2016, 16 (07) : 4467 - 4471
  • [36] DISLOCATION GENERATION INSTABILITY AND THE BRITTLE-TO-DUCTILE TRANSITION
    KHANTHA, M
    POPE, DP
    VITEK, V
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 1995, 192 : 435 - 442
  • [37] Brittle-to-ductile Transition in Martensite - Bainite Steel
    Sakamaki, Takumi
    Tanaka, Masaki
    Morikawa, Tatsuya
    Nako, Hidenori
    Nanba, Shigenobu
    ISIJ INTERNATIONAL, 2021, 61 (07) : 2167 - 2175
  • [38] Light irradiation induced brittle-to-ductile and ductile-to-brittle transition in inorganic semiconductors
    Wang, Hongwei
    Morozov, Sergey, I
    Goddard, William A., III
    An, Qi
    PHYSICAL REVIEW B, 2019, 99 (16)
  • [39] Plasticity and deformation microstructure of 4H-SiC below the brittle-to-ductile transition
    Mussi, A.
    Rabier, J.
    Thilly, L.
    Demenet, J. L.
    PHYSICA STATUS SOLIDI C - CURRENT TOPICS IN SOLID STATE PHYSICS, VOL 4, NO 8, 2007, 4 (08): : 2929 - +
  • [40] Plasticity and an inverse brittle-to-ductile transition in strontium titanate -: art. no. 085505
    Gumbsch, P
    Taeri-Baghbadrani, S
    Brunner, D
    Sigle, W
    Rühle, A
    PHYSICAL REVIEW LETTERS, 2001, 87 (08) : 85505 - 1