Variable selection in functional regression models: A review

被引:18
|
作者
Aneiros, German [1 ,2 ]
Novo, Silvia [1 ]
Vieu, Philippe [3 ]
机构
[1] Univ A Coruna, Dept Matemat, CITIC, MODES, Coruna, Spain
[2] ITMATI, ACoruna, Spain
[3] Univ Paul Sabatier, Inst Mathemat, Toulouse, France
关键词
Functional Data Analysis; Regression; Variable selection; NONCONCAVE PENALIZED LIKELIHOOD; SHRINKAGE ESTIMATION; DIMENSION REDUCTION; LINEAR-MODEL; LASSO;
D O I
10.1016/j.jmva.2021.104871
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Despite of various similar features, Functional Data Analysis and High-Dimensional Data Analysis are two major fields in Statistics that grew up recently almost independently one from each other. The aim of this paper is to propose a survey on methodological advances for variable selection in functional regression, which is typically a question for which both functional and multivariate ideas are crossing. More than a simple survey, this paper aims to promote even more new links between both areas. (C) 2021 Elsevier Inc. All rights reserved.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Variable selection in functional additive regression models
    Febrero-Bande, Manuel
    Gonzalez-Manteiga, Wenceslao
    Oviedo de la Fuente, Manuel
    COMPUTATIONAL STATISTICS, 2019, 34 (02) : 469 - 487
  • [2] Variable selection in functional additive regression models
    Manuel Febrero-Bande
    Wenceslao González-Manteiga
    Manuel Oviedo de la Fuente
    Computational Statistics, 2019, 34 : 469 - 487
  • [3] Variable selection in Functional Additive Regression Models
    Febrero-Bande, Manuel
    Gonzalez-Manteiga, Wenceslao
    Oviedo de la Fuente, Manuel
    FUNCTIONAL STATISTICS AND RELATED FIELDS, 2017, : 113 - 122
  • [4] Variable Selection in Semi-Functional Regression Models
    Aneiros, German
    Ferraty, Frederic
    Vieu, Philippe
    RECENT ADVANCES IN FUNCTIONAL DATA ANALYSIS AND RELATED TOPICS, 2011, : 17 - 22
  • [5] Variable selection in regression models including functional data predictors
    Liu K.
    Wang S.
    Beijing Hangkong Hangtian Daxue Xuebao/Journal of Beijing University of Aeronautics and Astronautics, 2019, 45 (10): : 1990 - 1994
  • [6] Component selection and variable selection for mixture regression models
    Qi, Xuefei
    Xu, Xingbai
    Feng, Zhenghui
    Peng, Heng
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2025, 206
  • [7] Variable selection in nonparametric functional concurrent regression
    Ghosal, Rahul
    Maity, Arnab
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2022, 50 (01): : 142 - 161
  • [8] Simultaneous variable selection for heteroscedastic regression models
    Zhang ZhongZhan
    Wang DaRong
    SCIENCE CHINA-MATHEMATICS, 2011, 54 (03) : 515 - 530
  • [9] VARIABLE SELECTION FOR REGRESSION MODELS WITH MISSING DATA
    Garcia, Ramon I.
    Ibrahim, Joseph G.
    Zhu, Hongtu
    STATISTICA SINICA, 2010, 20 (01) : 149 - 165
  • [10] Variable selection in multivariate linear models for functional data via sparse regularization
    Matsui, Hidetoshi
    Umezu, Yuta
    JAPANESE JOURNAL OF STATISTICS AND DATA SCIENCE, 2020, 3 (02) : 453 - 467