A review of level-set methods and some recent applications

被引:284
|
作者
Gibou, Frederic [1 ,2 ]
Fedkiw, Ronald [3 ]
Osher, Stanley [4 ]
机构
[1] Univ Calif Santa Barbara, Dept Mech Engn, Santa Barbara, CA 93106 USA
[2] Univ Calif Santa Barbara, Dept Comp Sci, Santa Barbara, CA 93106 USA
[3] Stanford Univ, Dept Comp Sci, Stanford, CA 94305 USA
[4] Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90095 USA
基金
美国国家科学基金会;
关键词
Level-set method; Ghost-fluid method; Voronoi interface method; Jump condition; Robin boundary condition; Dirichlet boundary condition; Octrees; Adaptive mesh refinement; Parallel computing; FRONT-TRACKING METHOD; ADAPTIVE MESH REFINEMENT; NAVIER-STOKES EQUATIONS; CONDITION CAPTURING METHOD; FINITE-DIFFERENCE SCHEME; FAST SWEEPING METHOD; GHOST FLUID METHOD; IRREGULAR DOMAINS; EFFICIENT IMPLEMENTATION; MODELING ELECTROPORATION;
D O I
10.1016/j.jcp.2017.10.006
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We review some of the recent advances in level-set methods and their applications. In particular, we discuss how to imposeboundary conditions at irregular domains and free boundaries, as well as the extension of level-set methods to adaptive Cartesian grids and parallel architectures. Illustrative applications are taken from the physical and life sciences. Fast sweeping methods are briefly discussed. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:82 / 109
页数:28
相关论文
共 50 条
  • [41] A Parametric Level-Set Method for Partially Discrete Tomography
    Kadu, Ajinkya
    van Leeuwen, Tristan
    Batenburg, K. Joost
    DISCRETE GEOMETRY FOR COMPUTER IMAGERY, DGCI 2017, 2017, 10502 : 122 - 134
  • [42] Level-set topology optimization considering nonlinear thermoelasticity
    Chung, Hayoung
    Amir, Oded
    Kim, H. Alicia
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2020, 361
  • [43] A generalized level-set immersed interface method with application
    Xu, Jian-Jun
    Li, Zhilin
    COMPUTERS & FLUIDS, 2024, 283
  • [44] Contextual Level-Set Method for Breast Tumor Segmentation
    Hussain, Sumaira
    Xi, Xiaoming
    Ullah, Inam
    Wu, Yongjian
    Ren, Chunxiao
    Lianzheng, Zhao
    Tian, Cuihuan
    Yin, Yilong
    IEEE ACCESS, 2020, 8 (08): : 189343 - 189353
  • [45] Application of the level-set method to the analysis of an evolving microstructure
    Park, C. -L.
    Voorhees, P. W.
    Thornton, K.
    COMPUTATIONAL MATERIALS SCIENCE, 2014, 85 : 46 - 58
  • [46] An improved level-set method for tracking the interface of fluids
    Jin Jian-liang
    Jiang Nan
    GEOINFORMATICS 2006: GEOSPATIAL INFORMATION SCIENCE, 2006, 6420
  • [47] A level-set method for thermal motion of bubbles and droplets
    Balcazar, Nestor
    Oliva, Assensi
    Rigola, Joaquim
    7TH EUROPEAN THERMAL-SCIENCES CONFERENCE (EUROTHERM2016), 2016, 745
  • [48] A Parallel Level-Set Based Method for Topology Optimization
    Wu, Tao
    Xu, Hao
    Hu, Qiangwen
    Zhao, Yansong
    Peng, Ying
    Chen, Lvjie
    Fu, Yu
    PROCEEDINGS OF THE 2014 IEEE 18TH INTERNATIONAL CONFERENCE ON COMPUTER SUPPORTED COOPERATIVE WORK IN DESIGN (CSCWD), 2014, : 505 - 509
  • [49] Application of the Level-Set Model with Constraints in Image Segmentation
    Klement, Vladimir
    Oberhuber, Tomas
    Sevcovic, Daniel
    NUMERICAL MATHEMATICS-THEORY METHODS AND APPLICATIONS, 2016, 9 (01) : 147 - 168
  • [50] AN IMPROVED LEVEL-SET RE-INITIALIZATION SOLVER
    王志亮
    周哲玮
    Applied Mathematics and Mechanics(English Edition), 2004, (10) : 1083 - 1088