A review of level-set methods and some recent applications

被引:284
|
作者
Gibou, Frederic [1 ,2 ]
Fedkiw, Ronald [3 ]
Osher, Stanley [4 ]
机构
[1] Univ Calif Santa Barbara, Dept Mech Engn, Santa Barbara, CA 93106 USA
[2] Univ Calif Santa Barbara, Dept Comp Sci, Santa Barbara, CA 93106 USA
[3] Stanford Univ, Dept Comp Sci, Stanford, CA 94305 USA
[4] Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90095 USA
基金
美国国家科学基金会;
关键词
Level-set method; Ghost-fluid method; Voronoi interface method; Jump condition; Robin boundary condition; Dirichlet boundary condition; Octrees; Adaptive mesh refinement; Parallel computing; FRONT-TRACKING METHOD; ADAPTIVE MESH REFINEMENT; NAVIER-STOKES EQUATIONS; CONDITION CAPTURING METHOD; FINITE-DIFFERENCE SCHEME; FAST SWEEPING METHOD; GHOST FLUID METHOD; IRREGULAR DOMAINS; EFFICIENT IMPLEMENTATION; MODELING ELECTROPORATION;
D O I
10.1016/j.jcp.2017.10.006
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We review some of the recent advances in level-set methods and their applications. In particular, we discuss how to imposeboundary conditions at irregular domains and free boundaries, as well as the extension of level-set methods to adaptive Cartesian grids and parallel architectures. Illustrative applications are taken from the physical and life sciences. Fast sweeping methods are briefly discussed. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:82 / 109
页数:28
相关论文
共 50 条
  • [21] Topology Optimization of Eddy Current Systems by Level-Set and Primal-Dual Methods
    Petrova, Svetozara I.
    INTERNATIONAL MULTICONFERENCE OF ENGINEERS AND COMPUTER SCIENTISTS (IMECS 2010), VOLS I-III, 2010, : 327 - 332
  • [22] A flexible level-set approach for tracking multiple interacting interfaces in embedded boundary methods
    Guenther, Claudia
    Meinke, Matthias
    Schroeder, Wolfgang
    COMPUTERS & FLUIDS, 2014, 102 : 182 - 202
  • [23] A Level-Set Method for Magnetic Substance Simulation
    Ni, Xingyu
    Zhu, Bo
    Wang, Bin
    Chen, Baoquan
    ACM TRANSACTIONS ON GRAPHICS, 2020, 39 (04):
  • [24] Level-set methods applied to the kinematic wave equation governing surface water flows
    Mean, Sovanna
    Unami, Koichi
    Fujihara, Masayuki
    JOURNAL OF ENVIRONMENTAL MANAGEMENT, 2020, 269
  • [25] PIPELINE SEGMENTATION USING LEVEL-SET METHOD
    Leangaramkul, A.
    Kasetkasem, T.
    Tipsuwan, Y.
    Isshiki, T.
    Chanwimaluang, T.
    Hoonsuwan, P.
    2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 3880 - 3883
  • [26] Deep level-set method for Stefan problems
    Shkolnikov, Mykhaylo
    Soner, H. Mete
    Tissot-Daguette, Valentin
    JOURNAL OF COMPUTATIONAL PHYSICS, 2024, 503
  • [27] Image registration via level-set motion: Applications to atlas-based segmentation
    Vemuri, BC
    Ye, J
    Chen, Y
    Leonard, CM
    MEDICAL IMAGE ANALYSIS, 2003, 7 (01) : 1 - 20
  • [28] Sharp interface immersed-boundary/level-set method for wave-body interactions
    Yang, Jianming
    Stern, Frederick
    JOURNAL OF COMPUTATIONAL PHYSICS, 2009, 228 (17) : 6590 - 6616
  • [29] A level-set approach for the metamorphosis of solid models
    Breen, DE
    Whitaker, RT
    IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2001, 7 (02) : 173 - 192
  • [30] A level-set method for interfacial flows with surfactant
    Xu, JJ
    Li, ZL
    Lowengrub, J
    Zhao, HK
    JOURNAL OF COMPUTATIONAL PHYSICS, 2006, 212 (02) : 590 - 616