A review of level-set methods and some recent applications

被引:298
作者
Gibou, Frederic [1 ,2 ]
Fedkiw, Ronald [3 ]
Osher, Stanley [4 ]
机构
[1] Univ Calif Santa Barbara, Dept Mech Engn, Santa Barbara, CA 93106 USA
[2] Univ Calif Santa Barbara, Dept Comp Sci, Santa Barbara, CA 93106 USA
[3] Stanford Univ, Dept Comp Sci, Stanford, CA 94305 USA
[4] Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90095 USA
基金
美国国家科学基金会;
关键词
Level-set method; Ghost-fluid method; Voronoi interface method; Jump condition; Robin boundary condition; Dirichlet boundary condition; Octrees; Adaptive mesh refinement; Parallel computing; FRONT-TRACKING METHOD; ADAPTIVE MESH REFINEMENT; NAVIER-STOKES EQUATIONS; CONDITION CAPTURING METHOD; FINITE-DIFFERENCE SCHEME; FAST SWEEPING METHOD; GHOST FLUID METHOD; IRREGULAR DOMAINS; EFFICIENT IMPLEMENTATION; MODELING ELECTROPORATION;
D O I
10.1016/j.jcp.2017.10.006
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We review some of the recent advances in level-set methods and their applications. In particular, we discuss how to imposeboundary conditions at irregular domains and free boundaries, as well as the extension of level-set methods to adaptive Cartesian grids and parallel architectures. Illustrative applications are taken from the physical and life sciences. Fast sweeping methods are briefly discussed. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:82 / 109
页数:28
相关论文
共 180 条
[11]   LOCAL ADAPTIVE MESH REFINEMENT FOR SHOCK HYDRODYNAMICS [J].
BERGER, MJ ;
COLELLA, P .
JOURNAL OF COMPUTATIONAL PHYSICS, 1989, 82 (01) :64-84
[12]   ADAPTIVE MESH REFINEMENT FOR HYPERBOLIC PARTIAL-DIFFERENTIAL EQUATIONS [J].
BERGER, MJ ;
OLIGER, J .
JOURNAL OF COMPUTATIONAL PHYSICS, 1984, 53 (03) :484-512
[13]   A ROBUST FRONT TRACKING METHOD: VERIFICATION AND APPLICATION TO SIMULATION OF THE PRIMARY BREAKUP OF A LIQUID JET [J].
Bo, Wurigen ;
Liu, Xingtao ;
Glimm, James ;
Li, Xiaolin .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2011, 33 (04) :1505-1524
[14]  
Bochkov Daniil, 2017, SOLVING POISSO UNPUB
[15]   Adaptive phase-field computations of dendritic crystal growth [J].
Braun, RJ ;
Murray, BT .
JOURNAL OF CRYSTAL GROWTH, 1997, 174 (1-4) :41-53
[16]   A local level-set method using a hash table data structure [J].
Brun, Emmanuel ;
Guittet, Arthur ;
Gibou, Frederic .
JOURNAL OF COMPUTATIONAL PHYSICS, 2012, 231 (06) :2528-2536
[17]   p4est: SCALABLE ALGORITHMS FOR PARALLEL ADAPTIVE MESH REFINEMENT ON FORESTS OF OCTREES [J].
Burstedde, Carsten ;
Wilcox, Lucas C. ;
Ghattas, Omar .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2011, 33 (03) :1103-1133
[18]   THE GROWTH OF CRYSTALS AND THE EQUILIBRIUM STRUCTURE OF THEIR SURFACES [J].
BURTON, WK ;
CABRERA, N ;
FRANK, FC .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1951, 243 (866) :299-358
[19]   Island dynamics and the level set method for epitaxial growth [J].
Caflisch, RE ;
Gyure, MF ;
Merriman, B ;
Osher, SJ ;
Ratsch, C ;
Vvedensky, DD ;
Zinck, JJ .
APPLIED MATHEMATICS LETTERS, 1999, 12 (04) :13-22
[20]   A numerical method for two-phase flow consisting of separate compressible and incompressible regions [J].
Caiden, R ;
Fedkiw, RP ;
Anderson, C .
JOURNAL OF COMPUTATIONAL PHYSICS, 2001, 166 (01) :1-27