A Machine Learning approach for shared bicycle demand forecasting

被引:0
|
作者
Mergulhao, Margarida [1 ]
Palma, Myke [1 ]
Costa, Carlos J. [2 ]
机构
[1] Univ Lisbon, ISEG Lisbon Sch Econ & Management, Lisbon, Portugal
[2] Univ Lisbon, Adv ISEG Lisbon Sch Econ & Management, Lisbon, Portugal
来源
2022 17TH IBERIAN CONFERENCE ON INFORMATION SYSTEMS AND TECHNOLOGIES (CISTI) | 2022年
关键词
sustainability; data science; machine learning; bicycle shared usage; MODELS;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
More than 9 million bicycles are shared worldwide through more than 3.000 Bicycle Shared Systems (BSS). Investigating possible behaviours related to the demand for these services will optimize their success. The purpose of this research is to identify the impact of weather conditions, covid and pollution on the usage of BSS. Different machine learning algorithms are studied and used to analyze the different variables. Results were consistent with the literature and theory. In what concerns the algorithms, random forest and multi-layer perceptron regressor performed better, showing a better prediction power.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Demand forecasting accuracy in the pharmaceutical supply chain: a machine learning approach
    Yani, Luh Putu Eka
    Aamer, Ammar
    INTERNATIONAL JOURNAL OF PHARMACEUTICAL AND HEALTHCARE MARKETING, 2023, 17 (01) : 1 - 23
  • [2] A machine learning approach to predicting bicycle demand during the COVID-19 pandemic
    Baumanis, Carolina
    Hall, Jennifer
    Machemehl, Randy
    RESEARCH IN TRANSPORTATION ECONOMICS, 2023, 100
  • [3] Forecasting energy demand of PCM integrated residential buildings: A machine learning approach
    Zhussupbekov, Maksat
    Memon, Shazim Ali
    Khawaja, Saleh Ali
    Nazir, Kashif
    Kim, Jong
    JOURNAL OF BUILDING ENGINEERING, 2023, 70
  • [4] An Experimental Machine Learning Approach for Mid-Term Energy Demand Forecasting
    Yan, Shu-Rong
    Tian, Manwen
    Alattas, Khalid A. A.
    Mohamadzadeh, Ardashir
    Sabzalian, Mohammad Hosein
    Mosavi, Amir H. H.
    IEEE ACCESS, 2022, 10 : 118926 - 118940
  • [5] Machine learning demand forecasting and supply chain performance
    Feizabadi, Javad
    INTERNATIONAL JOURNAL OF LOGISTICS-RESEARCH AND APPLICATIONS, 2022, 25 (02) : 119 - 142
  • [6] Demand Forecasting using Machine Learning
    Pawar, Piyush
    Hatcher, Solomon
    Jololian, Leon
    Anthony, Thomas
    2019 IEEE SOUTHEASTCON, 2019,
  • [7] Analysis of the Demand for Bicycle Use in a Smart City Based on Machine Learning
    Koshtura, Diana
    Bublyk, Myroslava
    Matseliukh, Yurii
    Dosyn, Dmytro
    Chyrun, Liliya
    Lozynska, Olga
    Karpov, Ihor
    Peleshchak, Ivan
    Maslak, Mariya
    Sachenko, Oleg
    MOMLET+DS 2020: MODERN MACHINE LEARNING TECHNOLOGIES AND DATA SCIENCE WORKSHOP, 2020, 2631
  • [8] A Machine Learning Approach to Volatility Forecasting*
    Christensen, Kim
    Siggaard, Mathias
    Veliyev, Bezirgen
    JOURNAL OF FINANCIAL ECONOMETRICS, 2023, 21 (05) : 1680 - 1727
  • [9] A Machine Learning Approach to Forecasting Hydropower Generation
    Di Grande, Sarah
    Berlotti, Mariaelena
    Cavalieri, Salvatore
    Gueli, Roberto
    ENERGIES, 2024, 17 (20)
  • [10] Forecasting Electricity Demand in Turkey Using Optimization and Machine Learning Algorithms
    Saglam, Mustafa
    Spataru, Catalina
    Karaman, Omer Ali
    ENERGIES, 2023, 16 (11)