On the rank of elliptic curves on Hilbert class field

被引:3
|
作者
Templier, Nicolas [1 ]
机构
[1] Inst Adv Study, Princeton, NJ 08540 USA
关键词
automorphic forms; equidistribution; L-functions; Heegner points; elliptic curves; IMAGINARY QUADRATIC FIELDS; CANONICAL HECKE CHARACTERS; LOCAL EPSILON-FACTORS; HEEGNER POINTS; CM-POINTS; QUATERNION ALGEBRAS; SHIMURA CURVES; L-SERIES; EQUIDISTRIBUTION; DERIVATIVES;
D O I
10.1112/S0010437X10005051
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let E/Q be an elliptic curve and let D < 0 be a sufficiently large fundamental discriminant. If E(<(Q)over bar>) contains Heegner points of discriminant D, those points generate a subgroup of rank at least |D|(delta), where delta > 0 is an absolute constant. This result is compatible with the Birch and Swinnerton-Dyer conjecture.
引用
收藏
页码:1087 / 1104
页数:18
相关论文
共 50 条
  • [41] On the Selmer group and rank of a family of elliptic curves and curves of genus one violating the Hasse principle
    Agathocleous, Eleni
    JOURNAL OF NUMBER THEORY, 2025, 267 : 101 - 133
  • [42] Independence of points on elliptic curves arising from special points on modular and Shimura curves, II: local results
    Buium, Alexandru
    Poonen, Bjorn
    COMPOSITIO MATHEMATICA, 2009, 145 (03) : 566 - 602
  • [43] Elliptic Curves of High Rank and the Riemann Zeta Function on the One Line
    Rubinstein, Michael O.
    EXPERIMENTAL MATHEMATICS, 2013, 22 (04) : 465 - 480
  • [44] Rankin–Selberg L-functions and the reduction of CM elliptic curves
    Sheng-Chi Liu
    Riad Masri
    Matthew P. Young
    Research in the Mathematical Sciences, 2
  • [45] Rank-one quadratic twists of an infinite family of elliptic curves
    Byeon, Dongho
    Jeon, Daeyeol
    Kim, Chang Heon
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2009, 633 : 67 - 76
  • [46] Constructing one-parameter families of elliptic curves with moderate rank
    Arms, Scott
    Lozano-Robledo, Alvaro
    Miller, Steven J.
    JOURNAL OF NUMBER THEORY, 2007, 123 (02) : 388 - 402
  • [47] AVERAGE RANK OF ELLIPTIC CURVES [after Manjul Bhargava and Arul Shankar]
    Poonen, Bjorn
    ASTERISQUE, 2013, (352) : 187 - 204
  • [48] MODULAR FORMS AND ELLIPTIC CURVES OVER THE CUBIC FIELD OF DISCRIMINANT -23
    Gunnells, Paul E.
    Yasaki, Dan
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2013, 9 (01) : 53 - 76
  • [49] Modular Forms and Elliptic Curves over the Field of Fifth Roots of Unity
    Gunnells, Paul E.
    Hajir, Farshid
    Yasaki, Dan
    EXPERIMENTAL MATHEMATICS, 2013, 22 (02) : 203 - 216
  • [50] Murmurations of Elliptic Curves
    He, Yang-Hui
    Lee, Kyu-Hwan
    Oliver, Thomas
    Pozdnyakov, Alexey
    EXPERIMENTAL MATHEMATICS, 2024,