A Unified Model for Robust Differential Expression Analysis of RNA-Seq Data

被引:0
|
作者
Liu, Kefei [1 ]
Shen, Li [1 ]
Jiang, Hui [2 ]
机构
[1] Univ Penn, Dept Biostat Epidemiol & Informat, Philadelphia, PA 19104 USA
[2] Univ Michigan, Dept Biostat, Ann Arbor, MI 48109 USA
来源
PROCEEDINGS 2018 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE (BIBM) | 2018年
关键词
Differential expression analysis; Inter-sample normalization; Linear regression; L0 sparsity regularization; RNA-seq; PROSTATE-CANCER; DOWN-REGULATION; NORMALIZATION;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
A fundamental task for RNA-seq data analysis is to determine whether the RNA-seq read counts for a gene or exon are significantly different across experimental conditions. Since the RNA-seq measurements are relative in nature, between-sample normalization of counts is an essential step in differential expression (DE) analysis. In most existing methods the normalization step is independent of DE analysis, which is not well justified since ideally normalization should be based on non-DE genes only. Recently, Jiang and Zhan proposed a robust statistical model for joint between-sample normalization and DE analysis from log-transformed RNA-seq data. Sample-specific normalization factors are modeled as unknown parameters in the gene-wise linear models, and the L0 penalty is introduced to induce sparsity in the regression coefficients. In their model, the experimental conditions are assumed to be categorical (e.g., 0 for control and 1 for case), and one-way analysis of variance (ANOVA) is used to identify genes that are differentially expressed between two or more conditions. In this work, Jiang and Zhan's model is generalized to accommodate continuous/numerical experimental conditions, and a linear regression model is used to detect genes for which the expression level is significantly affected by the experimental conditions. Furthermore, an efficient algorithm is developed to solve for the global solution of the resultant high-dimensional, non-convex and non-differentiable penalized least squares regression problem. Extensive simulation studies and a real RNA-seq data example show that when the proportion of DE genes is small or the numbers of up-and down-regulated genes are approximately equal the proposed method performs similarly to existing methods in terms of detection power and false positive rate. When a large proportion (e.g., > 30%) of genes are differentially expressed in an asymmetric manner, it outperforms existing methods and the performance gain is even more substantial as the sample size increases.
引用
收藏
页码:437 / 442
页数:6
相关论文
共 50 条
  • [41] iDEP: an integrated web application for differential expression and pathway analysis of RNA-Seq data
    Ge, Steven Xijin
    Son, Eun Wo
    Yao, Runan
    BMC BIOINFORMATICS, 2018, 19
  • [42] Detecting differential expression from RNA-seq data with expression measurement uncertainty
    Li Zhang
    Songcan Chen
    Xuejun Liu
    Frontiers of Computer Science, 2015, 9 : 652 - 663
  • [43] Detecting differential expression from RNA-seq data with expression measurement uncertainty
    Zhang, Li
    Chen, Songcan
    Liu, Xuejun
    FRONTIERS OF COMPUTER SCIENCE, 2015, 9 (04) : 652 - 663
  • [44] A general workflow for differential expression analysis of RNA-seq and introductions on related tools
    Zhang, Zhong
    PROCEEDINGS OF THE 2016 4TH INTERNATIONAL CONFERENCE ON ELECTRICAL & ELECTRONICS ENGINEERING AND COMPUTER SCIENCE (ICEEECS 2016), 2016, 50 : 328 - 338
  • [45] Sample size calculations for the differential expression analysis of RNA-seq data using a negative binomial regression model
    Li, Xiaohong
    Wu, Dongfeng
    Cooper, Nigel G. F.
    Rai, Shesh N.
    STATISTICAL APPLICATIONS IN GENETICS AND MOLECULAR BIOLOGY, 2019, 18 (01)
  • [46] Transformation and model choice for RNA-seq co-expression analysis
    Rau, Andrea
    Maugis-Rabusseau, Cathy
    BRIEFINGS IN BIOINFORMATICS, 2018, 19 (03) : 425 - 436
  • [47] Finding consistent patterns: A nonparametric approach for identifying differential expression in RNA-Seq data
    Li, Jun
    Tibshirani, Robert
    STATISTICAL METHODS IN MEDICAL RESEARCH, 2013, 22 (05) : 519 - 536
  • [48] TCC-GUI: a Shiny-based application for differential expression analysis of RNA-Seq count data
    Wei Su
    Jianqiang Sun
    Kentaro Shimizu
    Koji Kadota
    BMC Research Notes, 12
  • [49] Analysis of differential gene expression by RNA-seq data in ABCG1 knockout mice
    Shen, Si-Qi
    Yan, Xiao-Wei
    Li, Peng-Tao
    Ji, Xiao-Hui
    GENE, 2019, 689 : 24 - 33
  • [50] Benchmarking RNA-seq differential expression analysis methods using spike-in and simulation data
    Baik, Bukyung
    Yoon, Sora
    Nam, Dougu
    PLOS ONE, 2020, 15 (04):