A Unified Model for Robust Differential Expression Analysis of RNA-Seq Data

被引:0
|
作者
Liu, Kefei [1 ]
Shen, Li [1 ]
Jiang, Hui [2 ]
机构
[1] Univ Penn, Dept Biostat Epidemiol & Informat, Philadelphia, PA 19104 USA
[2] Univ Michigan, Dept Biostat, Ann Arbor, MI 48109 USA
来源
PROCEEDINGS 2018 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE (BIBM) | 2018年
关键词
Differential expression analysis; Inter-sample normalization; Linear regression; L0 sparsity regularization; RNA-seq; PROSTATE-CANCER; DOWN-REGULATION; NORMALIZATION;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
A fundamental task for RNA-seq data analysis is to determine whether the RNA-seq read counts for a gene or exon are significantly different across experimental conditions. Since the RNA-seq measurements are relative in nature, between-sample normalization of counts is an essential step in differential expression (DE) analysis. In most existing methods the normalization step is independent of DE analysis, which is not well justified since ideally normalization should be based on non-DE genes only. Recently, Jiang and Zhan proposed a robust statistical model for joint between-sample normalization and DE analysis from log-transformed RNA-seq data. Sample-specific normalization factors are modeled as unknown parameters in the gene-wise linear models, and the L0 penalty is introduced to induce sparsity in the regression coefficients. In their model, the experimental conditions are assumed to be categorical (e.g., 0 for control and 1 for case), and one-way analysis of variance (ANOVA) is used to identify genes that are differentially expressed between two or more conditions. In this work, Jiang and Zhan's model is generalized to accommodate continuous/numerical experimental conditions, and a linear regression model is used to detect genes for which the expression level is significantly affected by the experimental conditions. Furthermore, an efficient algorithm is developed to solve for the global solution of the resultant high-dimensional, non-convex and non-differentiable penalized least squares regression problem. Extensive simulation studies and a real RNA-seq data example show that when the proportion of DE genes is small or the numbers of up-and down-regulated genes are approximately equal the proposed method performs similarly to existing methods in terms of detection power and false positive rate. When a large proportion (e.g., > 30%) of genes are differentially expressed in an asymmetric manner, it outperforms existing methods and the performance gain is even more substantial as the sample size increases.
引用
收藏
页码:437 / 442
页数:6
相关论文
共 50 条
  • [21] Power analysis for RNA-Seq differential expression studies
    Lianbo Yu
    Soledad Fernandez
    Guy Brock
    BMC Bioinformatics, 18
  • [22] Accurate Classification of Differential Expression Patterns in a Bayesian Framework With Robust Normalization for Multi-Group RNA-Seq Count Data
    Osabe, Takayuki
    Shimizu, Kentaro
    Kadota, Koji
    BIOINFORMATICS AND BIOLOGY INSIGHTS, 2019, 13
  • [23] An iteration normalization and test method for differential expression analysis of RNA-seq data
    Yan Zhou
    Nan Lin
    Baoxue Zhang
    BioData Mining, 7
  • [24] An iteration normalization and test method for differential expression analysis of RNA-seq data
    Zhou, Yan
    Lin, Nan
    Zhang, Baoxue
    BIODATA MINING, 2014, 7
  • [25] A statistical normalization method and differential expression analysis for RNA-seq data between different species
    Zhou, Yan
    Zhu, Jiadi
    Tong, Tiejun
    Wang, Junhui
    Lin, Bingqing
    Zhang, Jun
    BMC BIOINFORMATICS, 2019, 20 (1)
  • [26] Comprehensive evaluation of differential gene expression analysis methods for RNA-seq data
    Rapaport, Franck
    Khanin, Raya
    Liang, Yupu
    Pirun, Mono
    Krek, Azra
    Zumbo, Paul
    Mason, Christopher E.
    Socci, Nicholas D.
    Betel, Doron
    GENOME BIOLOGY, 2013, 14 (09):
  • [27] A statistical normalization method and differential expression analysis for RNA-seq data between different species
    Yan Zhou
    Jiadi Zhu
    Tiejun Tong
    Junhui Wang
    Bingqing Lin
    Jun Zhang
    BMC Bioinformatics, 20
  • [28] Robustness of differential gene expression analysis of RNA-seq
    Stupnikov, A.
    McInerney, C. E.
    Savage, K. I.
    McIntosh, S. A.
    Emmert-Streib, F.
    Kennedy, R.
    Salto-Tellez, M.
    Prise, K. M.
    McArt, D. G.
    COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2021, 19 : 3470 - 3481
  • [29] Impact of human gene annotations on RNA-seq differential expression analysis
    Yu Hamaguchi
    Chao Zeng
    Michiaki Hamada
    BMC Genomics, 22
  • [30] Impact of human gene annotations on RNA-seq differential expression analysis
    Hamaguchi, Yu
    Zeng, Chao
    Hamada, Michiaki
    BMC GENOMICS, 2021, 22 (01)