A Unified Model for Robust Differential Expression Analysis of RNA-Seq Data

被引:0
|
作者
Liu, Kefei [1 ]
Shen, Li [1 ]
Jiang, Hui [2 ]
机构
[1] Univ Penn, Dept Biostat Epidemiol & Informat, Philadelphia, PA 19104 USA
[2] Univ Michigan, Dept Biostat, Ann Arbor, MI 48109 USA
来源
PROCEEDINGS 2018 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE (BIBM) | 2018年
关键词
Differential expression analysis; Inter-sample normalization; Linear regression; L0 sparsity regularization; RNA-seq; PROSTATE-CANCER; DOWN-REGULATION; NORMALIZATION;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
A fundamental task for RNA-seq data analysis is to determine whether the RNA-seq read counts for a gene or exon are significantly different across experimental conditions. Since the RNA-seq measurements are relative in nature, between-sample normalization of counts is an essential step in differential expression (DE) analysis. In most existing methods the normalization step is independent of DE analysis, which is not well justified since ideally normalization should be based on non-DE genes only. Recently, Jiang and Zhan proposed a robust statistical model for joint between-sample normalization and DE analysis from log-transformed RNA-seq data. Sample-specific normalization factors are modeled as unknown parameters in the gene-wise linear models, and the L0 penalty is introduced to induce sparsity in the regression coefficients. In their model, the experimental conditions are assumed to be categorical (e.g., 0 for control and 1 for case), and one-way analysis of variance (ANOVA) is used to identify genes that are differentially expressed between two or more conditions. In this work, Jiang and Zhan's model is generalized to accommodate continuous/numerical experimental conditions, and a linear regression model is used to detect genes for which the expression level is significantly affected by the experimental conditions. Furthermore, an efficient algorithm is developed to solve for the global solution of the resultant high-dimensional, non-convex and non-differentiable penalized least squares regression problem. Extensive simulation studies and a real RNA-seq data example show that when the proportion of DE genes is small or the numbers of up-and down-regulated genes are approximately equal the proposed method performs similarly to existing methods in terms of detection power and false positive rate. When a large proportion (e.g., > 30%) of genes are differentially expressed in an asymmetric manner, it outperforms existing methods and the performance gain is even more substantial as the sample size increases.
引用
收藏
页码:437 / 442
页数:6
相关论文
共 50 条
  • [1] A Unified Model for Joint Normalization and Differential Gene Expression Detection in RNA-Seq Data
    Liu, Kefei
    Ye, Jieping
    Yang, Yang
    Shen, Li
    Jiang, Hui
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2019, 16 (02) : 442 - 454
  • [2] A comparison of methods for differential expression analysis of RNA-seq data
    Soneson, Charlotte
    Delorenzi, Mauro
    BMC BIOINFORMATICS, 2013, 14
  • [3] Differential expression analysis for paired RNA-seq data
    Chung, Lisa M.
    Ferguson, John P.
    Zheng, Wei
    Qian, Feng
    Bruno, Vincent
    Montgomery, Ruth R.
    Zhao, Hongyu
    BMC BIOINFORMATICS, 2013, 14 : 110
  • [4] Differential Expression Analysis in RNA-seq Data Using a Geometric Approach
    Tambonis, Tiago
    Boareto, Marcelo
    Leite, Vitor B. P.
    JOURNAL OF COMPUTATIONAL BIOLOGY, 2018, 25 (11) : 1257 - 1265
  • [5] Data Driven Feature Selection for RNA-Seq Differential Expression Analysis
    Han, Henry
    PATTERN RECOGNITION IN BIOINFORMATICS, PRIB 2014, 2014, 8626 : 114 - 115
  • [6] Unit-Free and Robust Detection of Differential Expression from RNA-Seq Data
    Jiang H.
    Zhan T.
    Statistics in Biosciences, 2017, 9 (1) : 178 - 199
  • [7] A comparison of methods for differential expression analysis of RNA-seq data
    Charlotte Soneson
    Mauro Delorenzi
    BMC Bioinformatics, 14
  • [8] Measuring differential gene expression with RNA-seq: challenges and strategies for data analysis
    Finotello, Francesca
    Di Camillo, Barbara
    BRIEFINGS IN FUNCTIONAL GENOMICS, 2015, 14 (02) : 130 - 142
  • [9] Error estimates for the analysis of differential expression from RNA-seq count data
    Burden, Conrad J.
    Qureshi, Sumaira E.
    Wilson, Susan R.
    PEERJ, 2014, 2
  • [10] Differential Expression Analysis of RNA-seq Reads: Overview, Taxonomy, and Tools
    Chowdhury, Hussain Ahmed
    Bhattacharyya, Dhruba Kumar
    Kalita, Jugal Kumar
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2020, 17 (02) : 566 - 586