Control of displacement front in a model of immiscible two-phase flow in porous media

被引:7
|
作者
Akhmetzyanov, A. V. [1 ]
Kushner, A. G. [1 ,2 ]
Lychagin, V. V. [1 ,3 ]
机构
[1] Russian Acad Sci, Trapeznikov Inst Control Sci, Profsoyuznaya Ul 65, Moscow 117997, Russia
[2] Moscow MV Lomonosov State Univ, Fac Phys, Moscow 119992, Russia
[3] Univ Tromso, Tromso, Norway
基金
俄罗斯科学基金会;
关键词
D O I
10.1134/S1064562416040074
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For the Buckley-Leverett equation describing the flow of two immiscible fluids in porous media, an exact parametric representation of the solution is constructed with the help of the Backlund transformation. As a result, the advance of the displacement front can be controlled to a high degree of accuracy. The method is illustrated using an example of a typical oil well with actual parameters.
引用
收藏
页码:378 / 381
页数:4
相关论文
共 50 条
  • [11] Flow-Area Relations in Immiscible Two-Phase Flow in Porous Media
    Roy, Subhadeep
    Sinha, Santanu
    Hansen, Alex
    FRONTIERS IN PHYSICS, 2020, 8
  • [12] Local statistics of immiscible and incompressible two-phase flow in porous media
    Fyhn, Hursanay
    Sinha, Santanu
    Hansen, Alex
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2023, 616
  • [13] A Monte Carlo Algorithm for Immiscible Two-Phase Flow in Porous Media
    Isha Savani
    Santanu Sinha
    Alex Hansen
    Dick Bedeaux
    Signe Kjelstrup
    Morten Vassvik
    Transport in Porous Media, 2017, 116 : 869 - 888
  • [14] A finite volume scheme for two-phase immiscible flow in porous media
    Michel, A
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2003, 41 (04) : 1301 - 1317
  • [15] A Monte Carlo Algorithm for Immiscible Two-Phase Flow in Porous Media
    Savani, Isha
    Sinha, Santanu
    Hansen, Alex
    Bedeaux, Dick
    Kjelstrup, Signe
    Vassvik, Morten
    TRANSPORT IN POROUS MEDIA, 2017, 116 (02) : 869 - 888
  • [16] On the Modelling of Immiscible Viscous Fingering in Two-Phase Flow in Porous Media
    Sorbie, K. S.
    Al Ghafri, A. Y.
    Skauge, A.
    Mackay, E. J.
    TRANSPORT IN POROUS MEDIA, 2020, 135 (02) : 331 - 359
  • [17] A new formulation of immiscible compressible two-phase flow in porous media
    Amaziane, Brahim
    Jurak, Mladen
    COMPTES RENDUS MECANIQUE, 2008, 336 (07): : 600 - 605
  • [18] Scaling analysis for two-phase immiscible flow in heterogeneous porous media
    Furtado, F
    Pereira, F
    COMPUTATIONAL & APPLIED MATHEMATICS, 1998, 17 (03): : 237 - 263
  • [19] Stochastic analysis of two-phase immiscible flow in stratified porous media
    Artus, Vincent
    Furtado, Frederico
    Noetinger, Benoit
    Pereira, Felipe
    COMPUTATIONAL & APPLIED MATHEMATICS, 2004, 23 (2-3): : 153 - 172
  • [20] Homogenization of nonisothermal immiscible incompressible two-phase flow in porous media
    Amaziane, B.
    Jurak, M.
    Pankratov, L.
    Piatnitski, A.
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2018, 43 : 192 - 212