Numerical simulation of hydraulic fracture propagation in weakly consolidated sandstone reservoirs

被引:20
|
作者
Lin Hai [1 ,2 ]
Deng Jin-gen [1 ]
Liu Wei [1 ]
Xie Tao [2 ]
Xu Jie [2 ]
Liu Hai-long [2 ]
机构
[1] China Univ Petr, State Key Lab Petr Resources & Prospecting, Beijing 102249, Peoples R China
[2] China Natl Offshore Oil Corp China Ltd, State Key Lab Offshore Oil Exploitat, Tianjin Branch, Tianjin 300459, Peoples R China
关键词
weakly-consolidated sandstone; frac-packing; hydraulic fracture; fracture propagation; numerical simulation;
D O I
10.1007/s11771-018-3964-8
中图分类号
TF [冶金工业];
学科分类号
0806 ;
摘要
Frac-packing technology has been introduced to improve the development effect of weakly consolidated sandstone. It has double effects on increasing production and sand control. However, determining operation parameters of frac-packing is the key factor due to the particularity of weakly consolidated sandstone. In order to study the mechanisms of hydraulic fracture propagation and reveal the effect of fracturing parameters on fracture morphology in weakly consolidated sandstone, finite element numerical model of fluid-solid coupling is established to carry out numerical simulation to analyze influences of mechanical characteristics, formation permeability, fracturing fluid injection rate and viscosity on fracture propagation. The result shows that lower elastic modulus is favorable for inducing short and wide fractures and controls the fracture length while Poisson ratio has almost no effect. Large injection rate and high viscosity of fracturing fluid are advantageous to fracture initiation and propagation. Suitable fractures are produced when the injection rate is approximate to 3-4 m(3)/min and fluid viscosity is over 100 mPa<bold>s</bold>. The leak-off of fracturing fluid to formation is rising with the increase of formation permeability, which is adverse to fracture propagation. The work provides theoretical reference to determine the construction parameters for the frac-packing design in weakly consolidated reservoirs.
引用
收藏
页码:2944 / 2952
页数:9
相关论文
共 50 条
  • [21] Numerical investigation of effect of natural fractures on hydraulic-fracture propagation in unconventional reservoirs
    Xie, Jun
    Huang, Haoyong
    Ma, Huiyun
    Zeng, Bo
    Tang, Jizhou
    Yu, Wei
    Wu, Kan
    JOURNAL OF NATURAL GAS SCIENCE AND ENGINEERING, 2018, 54 : 143 - 153
  • [22] The study on mechanics of hydraulic fracture propagation direction in shale and numerical simulation
    Bohu Zhang
    Binxiang Ji
    Weifeng Liu
    Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 2018, 4 : 119 - 127
  • [23] Numerical simulation of hydraulic deep jet perforation on fracture propagation and orientation
    Zhong G.
    Wang R.
    Zhou W.
    Chen G.
    Wan C.
    Zhongguo Shiyou Daxue Xuebao (Ziran Kexue Ban)/Journal of China University of Petroleum (Edition of Natural Science), 2016, 40 (05): : 79 - 86
  • [24] Numerical simulation study of fracture propagation by internal plugging hydraulic fracturing
    Guo, Tiankui
    Hao, Tong
    Yang, Xin
    Li, Qun
    Liu, Yongzan
    Chen, Ming
    Qu, Zhanqing
    ENGINEERING FRACTURE MECHANICS, 2024, 310
  • [25] The study on mechanics of hydraulic fracture propagation direction in shale and numerical simulation
    Zhang, Bohu
    Ji, Binxiang
    Liu, Weifeng
    GEOMECHANICS AND GEOPHYSICS FOR GEO-ENERGY AND GEO-RESOURCES, 2018, 4 (02) : 119 - 127
  • [26] Numerical simulation of hydraulic fracture propagation under energy supplement conditions
    Dong, Jingfeng
    Qu, Hongyan
    Zhang, Jingchun
    Han, Feipeng
    Zhou, Fujian
    Shi, Peize
    Shi, Jilong
    Yu, Tianxi
    FRONTIERS IN EARTH SCIENCE, 2023, 11
  • [27] Numerical Simulation of Hydraulic Fracture Propagation in Coal Seams with Discontinuous Natural Fracture Networks
    Wang, Shen
    Li, Huamin
    Li, Dongyin
    PROCESSES, 2018, 6 (08)
  • [28] Investigation on the influences of gravel characteristics on the hydraulic fracture propagation in the conglomerate reservoirs
    Liu, Xiangjun
    Zhang, Andong
    Tang, Yong
    Wang, Xiaojun
    Xiong, Jian
    NATURAL GAS INDUSTRY B, 2022, 9 (03) : 232 - 239
  • [29] Numerical simulation on fracture propagation of methane in-situ explosion fracturing in shale gas reservoirs
    Wang J.
    Qu Z.
    Guo T.
    Chen M.
    Lü M.
    Wang X.
    Zhongguo Shiyou Daxue Xuebao (Ziran Kexue Ban)/Journal of China University of Petroleum (Edition of Natural Science), 2023, 47 (01): : 106 - 115
  • [30] Effect of mechanical heterogeneity on hydraulic fracture propagation in unconventional gas reservoirs
    Zou, Junpeng
    Jiao, Yu-Yong
    Tang, Zhicheng
    Ji, Yinlin
    Yan, Chengzeng
    Wang, Jinchao
    COMPUTERS AND GEOTECHNICS, 2020, 125 (125)