Predicting a Positive Antibody Response After 2 SARS-CoV-2 mRNA Vaccines in Transplant Recipients: A Machine Learning Approach With External Validation

被引:10
作者
Alejo, Jennifer L. [1 ]
Mitchell, Jonathan [1 ]
Chiang, Teresa P-Y [1 ]
Chang, Amy [1 ]
Abedon, Aura T. [1 ]
Werbel, William A. [2 ]
Boyarsky, Brian J. [1 ]
Zeiser, Laura B. [1 ]
Avery, Robin K. [2 ]
Tobian, Aaron A. R. [3 ]
Levan, Macey L. [1 ,4 ]
Warren, Daniel S. [1 ]
Massie, Allan B. [4 ]
Moore, Linda W. [5 ,6 ]
Guha, Ashrith [6 ,7 ]
Huang, Howard J. [6 ,8 ]
Knight, Richard J. [5 ,6 ]
Gaber, Ahmed Osama [5 ,6 ]
Ghobrial, Rafik Mark [5 ,6 ]
Garonzik-Wang, Jacqueline M. [9 ]
Segev, Dorry L. [1 ,4 ]
Bae, Sunjae [1 ]
机构
[1] Johns Hopkins Univ, Sch Med, Dept Surg, Baltimore, MD 21205 USA
[2] Johns Hopkins Univ, Sch Med, Dept Med, Baltimore, MD 21205 USA
[3] Johns Hopkins Univ, Sch Med, Dept Pathol, Baltimore, MD 21205 USA
[4] NYU Langone Hlth, NYU Grossman Sch Med, Dept Surg, New York, NY USA
[5] Houston Methodist Hosp, Dept Surg, Houston, TX 77030 USA
[6] Houston Methodist Hosp, JC Walter Jr Transplant Ctr, Houston, TX 77030 USA
[7] Houston Methodist Hosp, Methodist DeBakey Heart & Vasc Ctr, Houston, TX 77030 USA
[8] Houston Methodist Hosp, Dept Med, Houston, TX 77030 USA
[9] Univ Wisconsin, Dept Surg, Sch Med & Publ Hlth, Madison, WI USA
关键词
CALIBRATION; MODELS; ORGAN;
D O I
10.1097/TP.0000000000004259
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
Background. Solid organ transplant recipients (SOTRs) are less likely to mount an antibody response to SARS-CoV-2 mRNA vaccines. Understanding risk factors for impaired vaccine response can guide strategies for antibody testing and additional vaccine dose recommendations. Methods. Using a nationwide observational cohort of 1031 SOTRs, we created a machine learning model to explore, identify, rank, and quantify the association of 19 clinical factors with antibody responses to 2 doses of SARS-CoV-2 mRNA vaccines. External validation of the model was performed using a cohort of 512 SOTRs at Houston Methodist Hospital. Results. Mycophenolate mofetil use, a shorter time since transplant, and older age were the strongest predictors of a negative antibody response, collectively contributing to 76% of the model's prediction performance. Other clinical factors, including transplanted organ, vaccine type (mRNA-1273 versus BNT162b2), sex, race, and other immunosuppressants, showed comparatively weaker associations with an antibody response. This model showed moderate prediction performance, with an area under the receiver operating characteristic curve of 0.79 in our cohort and 0.67 in the external validation cohort. An online calculator based on our prediction model is available at http://transplantmodels.com/covidvaccine/. Conclusions. Our machine learning model helps understand which transplant patients need closer follow-up and additional doses of vaccine to achieve protective immunity. The online calculator based on this model can be incorporated into transplant providers' practice to facilitate patient-centric, precision risk stratification and inform vaccination strategies among SOTRs.
引用
收藏
页码:E452 / E460
页数:9
相关论文
共 25 条
[1]   Discrimination and Calibration of Clinical Prediction Models Users' Guides to the Medical Literature [J].
Alba, Ana Carolina ;
Agoritsas, Thomas ;
Walsh, Michael ;
Hanna, Steven ;
Iorio, Alfonso ;
Devereaux, P. J. ;
McGinn, Thomas ;
Guyatt, Gordon .
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2017, 318 (14) :1377-1384
[2]   Antibody Response to a Fourth Dose of a SARS-CoV-2 Vaccine in Solid Organ Transplant Recipients: A Case Series [J].
Alejo, Jennifer L. ;
Mitchell, Jonathan ;
Chiang, Teresa P. -Y. ;
Abedon, Aura T. ;
Boyarsky, Brian J. ;
Avery, Robin K. ;
Tobian, Aaron A. R. ;
Levan, Macey L. ;
Massie, Allan B. ;
Garonzik-Wang, Jacqueline M. ;
Segev, Dorry L. ;
Werbel, William A. .
TRANSPLANTATION, 2021, 105 (12) :E280-E281
[3]   Machine learning to predict transplant outcomes: helpful or hype? A national cohort study [J].
Bae, Sunjae ;
Massie, Allan B. ;
Caffo, Brian S. ;
Jackson, Kyle R. ;
Segev, Dorry L. .
TRANSPLANT INTERNATIONAL, 2020, 33 (11) :1472-1480
[4]   Estimating and Testing Vaccine Sieve Effects Using Machine Learning [J].
Benkeser, David ;
Gilbert, Peter B. ;
Carone, Marco .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2019, 114 (527) :1038-1049
[5]   Antibody Response After a Third Dose of the mRNA-1273 SARS-CoV-2 Vaccine in Kidney Transplant Recipients With Minimal Serologic Response to 2 Doses [J].
Benotmane, Ilies ;
Gautier, Gabriela ;
Perrin, Peggy ;
Olagne, Jerome ;
Cognard, Noelle ;
Fafi-Kremer, Samira ;
Caillard, Sophie .
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2021, 326 (11) :1063-1065
[6]   Antibody Response to 2-Dose SARS-CoV-2 mRNA Vaccine Series in Solid Organ Transplant Recipients [J].
Boyarsky, Brian J. ;
Werbel, William A. ;
Avery, Robin K. ;
Tobian, Aaron A. R. ;
Massie, Allan B. ;
Segev, Dorry L. ;
Garonzik-Wang, Jacqueline M. .
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2021, 325 (21) :2204-2206
[7]   Immunogenicity of a Single Dose of SARS-CoV-2 Messenger RNA Vaccine in Solid Organ Transplant Recipients [J].
Boyarsky, Brian J. ;
Werbel, William A. ;
Avery, Robin K. ;
Tobian, Aaron A. R. ;
Massie, Allan B. ;
Segev, Dorry L. ;
Garonzik-Wang, Jacqueline M. .
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2021, 325 (17) :1784-1786
[8]   Real-world Effectiveness of the Pfizer-BioNTech BNT162b2 and Oxford-AstraZeneca ChAdOx1-S Vaccines Against SARS-CoV-2 in Solid Organ and Islet Transplant Recipients [J].
Callaghan, Chris J. ;
Mumford, Lisa ;
Curtis, Rebecca M. K. ;
Williams, Sarah, V ;
Whitaker, Heather ;
Andrews, Nick ;
Bernal, Jamie Lopez ;
Ushiro-Lumb, Ines ;
Pettigrew, Gavin J. ;
Thorburn, Douglas ;
Forsythe, John L. R. ;
Ravanan, Rommel .
TRANSPLANTATION, 2022, 106 (03) :436-446
[9]  
Chiang TP., 2022, AM J TRANSPLANT, P1
[10]   Evaluating the antibody response to SARS-COV-2 vaccination amongst kidney transplant recipients at a single nephrology centre [J].
Chukwu, Chukwuma A. ;
Mahmood, Kassir ;
Elmakki, Safa ;
Gorton, Julie ;
Kalra, Phillip A. ;
Poulikakos, Dimitrios ;
Middleton, Rachel .
PLOS ONE, 2022, 17 (03)