Metallic three-dimensional porous siligraphene as a superior anode material for Li/Na/K-ion batteries

被引:15
|
作者
Zhang, Yinan [1 ]
Zhao, Yafei [1 ]
Bai, Guansuo [1 ]
Wang, Hangwei [1 ]
Jin, Rencheng [2 ]
Huang, Yong [3 ]
Lin, He [1 ]
Hu, Yingdan [4 ]
机构
[1] Ludong Univ, Sch Chem & Mat Sci, Yantai 264025, Peoples R China
[2] Fuyang Normal Univ, Sch Chem & Mat Engn, Fuyang 236037, Peoples R China
[3] Hebei North Univ, Coll Lab Med, Key Lab Biomed Mat Zhangjiakou, Zhangjiakou 075000, Peoples R China
[4] Yantai Vocat Coll, Dept Food & Biochem Engn, Yantai 264670, Peoples R China
关键词
Metal ion batteries; Anode materials; Siligraphene; 3D porous materials; LITHIUM; LI; 1ST-PRINCIPLES; DENSITY; SEMIMETAL; CARBIDE;
D O I
10.1016/j.colsurfa.2022.129894
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Due to the high specific capacity and low open circuit voltage (OCV), 2D siligraphene has been widely considered as a promising anode material for metal ion batteries (MIBs). Nonetheless, its electrochemical performance is greatly impeded by low mechanical stiffness, poor hopping dynamics and small pore size. Motivated by the great success of 3D carbon materials, we propose a metallic porous 3D-SiC anode using the corresponding 2D tetragonal SiC as a structural unit. By first principles molecular dynamics, mechanical property and phonon spectrum calculations, it is found that 3D-SiC possesses good thermal, mechanical and dynamical stability. The maximum Young's and bulk moduli of 3D-SiC are 217.16, 400.90 GPa, respectively, exhibiting a moderate mechanical stiffness. More importantly, the intrinsically high electrical conductivity, unique porous structure and low mass density make the 3D-SiC a promising anode candidate for Li/Na/K-ion batteries with small volume changes (6.43 %, 3.75 % and 8.66 %), low diffusion barriers (0.17, 0.19 and 0.017 eV), high storage capacities (947, 947 and 724 mA h/g) and low average OCVs (0.56, 0.34 and 0.11 V). The encouraging results show that siligraphene-based porous 3D anodes are worthy of further investigation for MIBs.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] A Stable Three-Dimensional Porous Carbon as a High-Performance Anode Material for Lithium, Sodium, and Potassium Ion Batteries
    Younis, Umer
    Qayyum, Fizzah
    Muhammad, Imran
    Yaseen, Muhammad
    Sun, Qiang
    ADVANCED THEORY AND SIMULATIONS, 2022, 5 (09)
  • [32] Physical properties of silicene electrodes for Li-, Na-, Mg-, and K-ion batteries
    Galashev, Alexander Y.
    Vorob'ev, Alexey S.
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2018, 22 (11) : 3383 - 3391
  • [33] Theoretical Investigation of C3N Monolayer as Anode Material for Li/Na-Ion Batteries
    Kasprzak, G. T.
    Gruszka, K. M.
    Durajski, A. P.
    ACTA PHYSICA POLONICA A, 2021, 139 (05) : 621 - 624
  • [34] Black phosphorene/NP heterostructure as a novel anode material for Li/Na-ion batteries
    Wang, Yanwei
    Tian, Wu
    Zhang, Huijuan
    Wang, Yu
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2022, 24 (33) : 19697 - 19704
  • [35] Porous CoO/C polyhedra as anode material for Li-ion batteries
    Yuan, Weiwei
    Zhang, Jun
    Xie, Dong
    Dong, Zimin
    Su, Qingmei
    Du, Gaohui
    ELECTROCHIMICA ACTA, 2013, 108 : 506 - 511
  • [36] Three-dimensional porous Sn-Cu alloy anode for lithium-ion batteries
    Xue, Leigang
    Fu, Zhenghao
    Yao, Yu
    Huang, Tao
    Yu, Aishui
    ELECTROCHIMICA ACTA, 2010, 55 (24) : 7310 - 7314
  • [37] Three-dimensional porous graphene microsphere for high-performance anode of lithium ion batteries
    Zhu, Bo
    Liu, Xiaoxu
    Li, Na
    Yang, Chen
    Ji, Tianyi
    Yan, Kai
    Chi, Hongyan
    Zhang, Xiaolan
    Sun, Fei
    Sun, Daobin
    Chi, Caixia
    Wang, Xin
    Wang, Ying
    Chen, Liang
    Yao, Lei
    SURFACE & COATINGS TECHNOLOGY, 2019, 360 : 232 - 237
  • [38] Three-Dimensional Porous Tetrakis Methane and Silane as a High-Capacity Anode Material for Monovalent and Divalent Metal Ion Batteries
    Ghani, Awais
    Ahmed, Shehzad
    Murtaza, Adil
    Muhammad, Imran
    Zuo, Wen Liang
    Yang, Sen
    JOURNAL OF PHYSICAL CHEMISTRY C, 2023, 127 (34) : 16802 - 16810
  • [39] First Principles Study of Penta-siligraphene as High-Performance Anode Material for Li-Ion Batteries
    Wang, Hewen
    Wu, Musheng
    Tian, Zhengfang
    Xu, Bo
    Ouyang, Chuying
    NANOSCALE RESEARCH LETTERS, 2019, 14 (1):
  • [40] 2D phosphorus carbide as promising anode materials for Na/K-ion batteries from first-principles study
    Mao, Bingxin
    Li, Hui
    Duan, Qian
    Hou, Jianhua
    JOURNAL OF MOLECULAR MODELING, 2022, 28 (06)