Metallic three-dimensional porous siligraphene as a superior anode material for Li/Na/K-ion batteries

被引:15
|
作者
Zhang, Yinan [1 ]
Zhao, Yafei [1 ]
Bai, Guansuo [1 ]
Wang, Hangwei [1 ]
Jin, Rencheng [2 ]
Huang, Yong [3 ]
Lin, He [1 ]
Hu, Yingdan [4 ]
机构
[1] Ludong Univ, Sch Chem & Mat Sci, Yantai 264025, Peoples R China
[2] Fuyang Normal Univ, Sch Chem & Mat Engn, Fuyang 236037, Peoples R China
[3] Hebei North Univ, Coll Lab Med, Key Lab Biomed Mat Zhangjiakou, Zhangjiakou 075000, Peoples R China
[4] Yantai Vocat Coll, Dept Food & Biochem Engn, Yantai 264670, Peoples R China
关键词
Metal ion batteries; Anode materials; Siligraphene; 3D porous materials; LITHIUM; LI; 1ST-PRINCIPLES; DENSITY; SEMIMETAL; CARBIDE;
D O I
10.1016/j.colsurfa.2022.129894
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Due to the high specific capacity and low open circuit voltage (OCV), 2D siligraphene has been widely considered as a promising anode material for metal ion batteries (MIBs). Nonetheless, its electrochemical performance is greatly impeded by low mechanical stiffness, poor hopping dynamics and small pore size. Motivated by the great success of 3D carbon materials, we propose a metallic porous 3D-SiC anode using the corresponding 2D tetragonal SiC as a structural unit. By first principles molecular dynamics, mechanical property and phonon spectrum calculations, it is found that 3D-SiC possesses good thermal, mechanical and dynamical stability. The maximum Young's and bulk moduli of 3D-SiC are 217.16, 400.90 GPa, respectively, exhibiting a moderate mechanical stiffness. More importantly, the intrinsically high electrical conductivity, unique porous structure and low mass density make the 3D-SiC a promising anode candidate for Li/Na/K-ion batteries with small volume changes (6.43 %, 3.75 % and 8.66 %), low diffusion barriers (0.17, 0.19 and 0.017 eV), high storage capacities (947, 947 and 724 mA h/g) and low average OCVs (0.56, 0.34 and 0.11 V). The encouraging results show that siligraphene-based porous 3D anodes are worthy of further investigation for MIBs.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] A TiSe monolayer as a superior anode for applications of Li/Na/K-ion batteries
    Wang, Mengke
    Wang, Shan
    Liang, Yunye
    Xie, Yiqun
    Ye, Xiang
    Sun, Shoutian
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2023, 25 (36) : 24625 - 24635
  • [2] Two-dimensional MnC as a potential anode material for Na/K-ion batteries: a theoretical study
    Chen, Qinyi
    Wang, Haochi
    Li, Hui
    Duan, Qian
    Jiang, Dayong
    Hou, Jianhua
    JOURNAL OF MOLECULAR MODELING, 2020, 26 (04)
  • [3] Evaluation of Sb/Bi heterostructure as anode material for Li/Na/K-ion intercalation batteries: A DFT study
    Anwar, Maida
    Durrani, Mamoona
    Buzdar, Saeed Ahmad
    Majid, Abdul
    Alarfaji, Saleh S.
    Khan, Muhammad Isa
    COMPUTATIONAL AND THEORETICAL CHEMISTRY, 2025, 1245
  • [4] A novel Tetrahexcarbon as a high-performance anode material for Na-ion and K-ion batteries
    Ma, Shihao
    Zhang, Hui
    Cheng, Zishuang
    Xie, Xinjian
    Zhang, Xiaoming
    Liu, Guodong
    Chen, Guifeng
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2024, 684
  • [5] Prediction of Two-dimensional B9 as High-performance Anode Material for Li/Na/K-ion Batteries
    Song, Yi
    Di, Yaxin
    Wang, Shiyao
    Khazaei, Mohammad
    Wang, Junjie
    JOURNAL OF PHYSICAL CHEMISTRY C, 2023, 127 (48) : 23129 - 23137
  • [6] A Black Phosphorus-Graphite Composite Anode for Li-/Na-/K-Ion Batteries
    Jin, Hongchang
    Wang, Haiyun
    Qi, Zhikai
    Bin, De-Shan
    Zhang, Taiming
    Wan, Yangyang
    Chen, Jiaye
    Chuang, Chenghao
    Lu, Ying-Rui
    Chan, Ting-Shan
    Ju, Huanxin
    Cao, An-Min
    Yan, Wensheng
    Wu, Xiaojun
    Ji, Hengxing
    Wan, Li-Jun
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2020, 59 (06) : 2318 - 2322
  • [7] Electrospinning techniques for Li, Na and K-ion batteries
    Ilango, P. Robert
    Peng, Shengjie
    CURRENT OPINION IN ELECTROCHEMISTRY, 2019, 18 : 106 - 112
  • [8] Two-dimensional Janus MoSSe as a potential anode material for Na/K-ion batteries: A theoretical study
    Wang, Haochi
    Chen, Qinyi
    Li, Hui
    Duan, Qian
    Jiang, Dayong
    Hou, Jianhua
    CHEMICAL PHYSICS LETTERS, 2019, 735
  • [9] Bi-C monolayer as a promising 2D anode material for Li, Na, and K-ion batteries
    Ghani, Awais
    Ahmed, Shehzad
    Murtaza, Adil
    Muhammad, Imran
    Rehman, Wasif ur
    Zhou, Chao
    Zuo, Wen Liang
    Yang, Sen
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2023, 25 (06) : 4980 - 4986
  • [10] Double-Layer Honeycomb AIP: A Promising Anode Material for Li-, Na-, and K-Ion Batteries
    Yi, Shuaiyu
    Liu, Guangdong
    Liu, Zhixiao
    Hu, Wangyu
    Deng, Huiqiu
    JOURNAL OF PHYSICAL CHEMISTRY C, 2020, 124 (05) : 2978 - 2986