High-Performance Aqueous Rechargeable K/Zn Hybrid Batteries Based on Berlin Green Cathode Materials

被引:20
|
作者
Ni, Gang [1 ]
Hao, Zhao [1 ]
Zou, Guo Yin [1 ]
Cao, Fu Hu [1 ]
Qin, Ling [1 ]
Zhou, Cheng Gang [2 ]
机构
[1] Hefei Univ Technol, Sch Chem & Chem Engn, 193 Tunxi Rd, Hefei 230009, Anhui, Peoples R China
[2] China Univ Geosci, Fac Mat Sci & Chem, 388 Lumo Rd, Wuhan 430078, Hubei, Peoples R China
基金
中国国家自然科学基金;
关键词
aqueous zinc-based battery; cathode material; electrochemistry; energy conversion; Prussian blue analog; ELECTRODE MATERIALS; ION; PHASE;
D O I
10.1002/celc.202101351
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Aqueous rechargeable zinc-based batteries with the advantages of sustainability, safety, and low cost, are suitable for large-scale electrochemical energy storage applications. In this work, aqueous zinc-based batteries with low defect Berlin green (FeHCF) cathode, a hybrid zinc triflate and potassium triflate electrolyte, and zinc anodes are developed. In the hybrid electrolyte, the K+ ions with the weak solvation effect and small electrostatic interaction are the dominant intercalation species in the FeHCF, resulting in the fast charge transfer process and rapid diffusion kinetics. The Zn2+ ions stay at the surface rather than penetrate into the bulk phase. Thus, the hybrid batteries deliver a high specific capacity of 169.2 mAh g(-1) at 100 mA g(-1), excellent rate performance with 45.7 mAh g(-1) at 6 A g(-1), and good long-term cyclability with a capacity retention of 57 % over 1000 cycles at 1 A g(-1). The results suggest using aqueous K/Zn hybrid electrolytes can improve the electrochemical performance of FeHCF.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] A high-performance aqueous rechargeable zinc battery based on organic cathode integrating quinone and pyrazine
    Gao, Yingjie
    Li, Gaofeng
    Wang, Feng
    Chu, Jun
    Yu, Pu
    Wang, Baoshan
    Zhan, Hui
    Song, Zhiping
    ENERGY STORAGE MATERIALS, 2021, 40 : 31 - 40
  • [32] Manganese-based materials as cathode for rechargeable aqueous zinc-ion batteries
    Guo, Yixuan
    Zhang, Yixiang
    Lu, Hongbin
    BATTERY ENERGY, 2022, 1 (02):
  • [33] Structurally reconstituted calcium manganate nanoparticles as a high-performance cathode for aqueous Zn-ion batteries
    Zeng, Siqi
    Xu, Wei
    Zheng, Dezhou
    Zhang, Haozhe
    Wang, Fuxin
    Liu, Xiaoqing
    Lu, Xihong
    JOURNAL OF MATERIALS CHEMISTRY A, 2021, 9 (08) : 5053 - 5059
  • [34] High-Performance Anode Materials for Rechargeable Lithium-Ion Batteries
    Jun Lu
    Zhongwei Chen
    Feng Pan
    Yi Cui
    Khalil Amine
    Electrochemical Energy Reviews, 2018, 1 : 35 - 53
  • [35] A VS2@N-doped carbon hybrid with strong interfacial interaction for high-performance rechargeable aqueous Zn-ion batteries
    Liu, Jiapeng
    Peng, Wenchao
    Li, Yang
    Zhang, Fengbao
    Fan, Xiaobin
    JOURNAL OF MATERIALS CHEMISTRY C, 2021, 9 (19) : 6308 - 6315
  • [36] Nanostructured materials for high-performance Li-ion rechargeable batteries
    Wang, Ying
    Guan, Dongsheng
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2011, 241
  • [37] Prussian blue nanocubes as cathode materials for aqueous Na-Zn hybrid batteries
    Wang, Li-Ping
    Wang, Peng-Fei
    Wang, Tai-Shan
    Yin, Ya-Xia
    Guo, Yu-Guo
    Wang, Chun-Ru
    JOURNAL OF POWER SOURCES, 2017, 355 : 18 - 22
  • [38] High-Performance Anode Materials for Rechargeable Lithium-Ion Batteries
    Lu, Jun
    Chen, Zhongwei
    Pan, Feng
    Cui, Yi
    Amine, Khalil
    ELECTROCHEMICAL ENERGY REVIEWS, 2018, 1 (01) : 35 - 53
  • [39] Cathode materials for high-performance potassium-ion batteries
    Li, Lin
    Hu, Zhe
    Liu, Qiannan
    Wang, Jia-Zhao
    Guo, Zaiping
    Liu, Hua-Kun
    CELL REPORTS PHYSICAL SCIENCE, 2021, 2 (12):
  • [40] A Porphyrin-Phenylalkynyl-Based Conjugated Organic Polymer as a High-Performance Cathode for Rechargeable Organic Batteries
    Peng, Xi
    Zhou, Yangmei
    Chen, Binhua
    Cao, Wenju
    Sun, Caihong
    Liao, Yao
    Huang, Xingying
    Tu, Xiaojian
    Chen, Zhi
    Liu, Wei
    Gao, Ping
    ACS APPLIED MATERIALS & INTERFACES, 2024, 16 (41) : 55511 - 55519