Multi-label Feature Selection via Global Relevance and Redundancy Optimization

被引:0
|
作者
Zhang, Jia [1 ]
Lin, Yidong [2 ]
Jiang, Min [1 ]
Li, Shaozi [1 ]
Tang, Yong [3 ]
Tan, Kay Chen [4 ]
机构
[1] Xiamen Univ, Dept Artificial Intelligence, Xiamen, Peoples R China
[2] Xiamen Univ, Sch Math Sci, Xiamen, Peoples R China
[3] South China Normal Univ, Sch Comp Sci, Guangzhou, Peoples R China
[4] City Univ Hong Kong, Dept Comp Sci, Hong Kong, Peoples R China
基金
中国国家自然科学基金;
关键词
INFORMATION;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Information theoretical based methods have attracted a great attention in recent years, and gained promising results to deal with multi-label data with high dimensionality. However, most of the existing methods are either directly transformed from heuristic single-label feature selection methods or inefficient in exploiting labeling information. Thus, they may not be able to get an optimal feature selection result shared by multiple labels. In this paper, we propose a general global optimization framework, in which feature relevance, label relevance (i.e., label correlation), and feature redundancy are taken into account, thus facilitating multi-label feature selection. Moreover, the proposed method has an excellent mechanism for utilizing inherent properties of multi-label learning. Specially, we provide a formulation to extend the proposed method with label-specific features. Empirical studies on twenty multi-label data sets reveal the effectiveness and efficiency of the proposed method. Our implementation of the proposed method is available online at: https://jiazhang-ml.pub/GRRO-master.zip.
引用
收藏
页码:2512 / 2518
页数:7
相关论文
共 50 条
  • [31] Label Construction for Multi-label Feature Selection
    Spolaor, Newton
    Monard, Maria Carolina
    Tsoumakas, Grigorios
    Lee, Huei Diana
    2014 BRAZILIAN CONFERENCE ON INTELLIGENT SYSTEMS (BRACIS), 2014, : 247 - 252
  • [32] Multi-label feature selection based on stable label relevance and label-specific features
    Yang, Yong
    Chen, Hongmei
    Mi, Yong
    Luo, Chuan
    Horng, Shi-Jinn
    Li, Tianrui
    INFORMATION SCIENCES, 2023, 648
  • [33] Deep label relevance and label ambiguity based multi-label feature selection for text classification
    Verma, Gurudatta
    Sahu, Tirath Prasad
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2025, 148
  • [34] Embedded multi-label feature selection via orthogonal regression
    Xu, Xueyuan
    Wei, Fulin
    Yu, Tianze
    Lu, Jinxin
    Liu, Aomei
    Zhuo, Li
    Nie, Feiping
    Wu, Xia
    PATTERN RECOGNITION, 2025, 163
  • [35] Robust sparse and low-redundancy multi-label feature selection with dynamic local and global structure preservation
    Li, Yonghao
    Hu, Liang
    Gao, Wanfu
    PATTERN RECOGNITION, 2023, 134
  • [36] Unsupervised feature selection via maximum relevance and minimum global redundancy
    Zuo, Xianyu
    Zhang, Wenbo
    Wang, Xiangyu
    Dang, Lanxue
    Qiao, Baojun
    Wang, Yadi
    PATTERN RECOGNITION, 2025, 164
  • [37] Feature Selection for Multi-Label Learning
    Spolaor, Newton
    Monard, Maria Carolina
    Lee, Huei Diana
    PROCEEDINGS OF THE TWENTY-FOURTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE (IJCAI), 2015, : 4401 - 4402
  • [38] ReliefF for Multi-label Feature Selection
    Spolaor, Newton
    Cherman, Everton Alvares
    Monard, Maria Carolina
    Lee, Huei Diana
    2013 BRAZILIAN CONFERENCE ON INTELLIGENT SYSTEMS (BRACIS), 2013, : 6 - 11
  • [39] Partial Multi-Label Feature Selection
    Wang, Jing
    Li, Peipei
    Yu, Kui
    2022 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2022,
  • [40] Multi-Label Causal Feature Selection
    Wu, Xingyu
    Jiang, Bingbing
    Yu, Kui
    Chen, Huanhuan
    Miao, Chunyan
    THIRTY-FOURTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THE THIRTY-SECOND INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE AND THE TENTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2020, 34 : 6430 - 6437