Frobenius C*-algebras and local adjunctions of C*-correspondences

被引:0
作者
Crisp, Tyrone [1 ]
机构
[1] Univ Maine, Dept Math & Stat, 5752 Neville Hall, Orono, ME 04469 USA
关键词
Frobenius algebra; C*-algebra; C*-correspondence; adjunction; EQUIVALENCE; MONADS;
D O I
10.1142/S0129167X21501020
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Generalizing the well-known correspondence between two-sided adjunctions and Frobenius algebras, we establish a one-to-one correspondence between local adjunctions of C*-correspondences, as defined and studied in prior work with Clare and Higson; and Frobenius C*-algebras, a natural C*-algebraic adaptation of the standard notion of Frobenius algebras that we introduce here.
引用
收藏
页数:19
相关论文
共 29 条
[11]  
Heunen C., 2019, Oxford Graduate Texts in Mathematics, V28
[12]   Frobenius Structures Over Hilbert C*-Modules [J].
Heunen, Chris ;
Reyes, Manuel L. .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2018, 361 (02) :787-824
[13]  
Heunen C, 2016, THEOR APPL CATEG, V31, P1016
[14]  
Huef AA, 2010, P SYMP PURE MATH, V81, P9
[15]  
Kadison L, 1999, U LECT SERIES, V14
[16]   Jones index theory for Hilbert C*-bimodules and its equivalence with conjugation theory [J].
Kajiwara, T ;
Pinzari, C ;
Watatani, Y .
JOURNAL OF FUNCTIONAL ANALYSIS, 2004, 215 (01) :1-49
[17]  
Kandelaki T., 2001, PROC RAZMADZE MATH I, V127, P89
[18]  
Kasch F., 1960, S B HEIDELBERGER MN, P87
[19]   Locally compact quantum groups [J].
Kustermans, J ;
Vaes, S .
ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2000, 33 (06) :837-934
[20]  
Lance E. C., 1995, LONDON MATH SOC LECT, V210