The Darboux Transformation and N-Soliton Solutions of Coupled Cubic-Quintic Nonlinear Schrodinger Equation on a Time-Space Scale

被引:5
|
作者
Dong, Huanhe [1 ]
Wei, Chunming [1 ]
Zhang, Yong [1 ]
Liu, Mingshuo [1 ]
Fang, Yong [1 ]
机构
[1] Shandong Univ Sci & Technol, Coll Math & Syst Sci, Qingdao 266590, Peoples R China
基金
中国国家自然科学基金;
关键词
coupled cubic-quintic nonlinear Schrodinger equation; time-space scales; Darboux transformation; N-soliton solution; BACKLUND TRANSFORMATION; WAVE SOLUTIONS; SYSTEMS;
D O I
10.3390/fractalfract6010012
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The coupled cubic-quintic nonlinear Schrodinger (CQNLS) equation is a universal mathematical model describing many physical situations, such as nonlinear optics and Bose-Einstein condensate. In this paper, in order to simplify the process of similar analysis with different forms of the coupled CQNLS equation, this dynamic system is extended to a time-space scale based on the Lax pair and zero curvature equation. Furthermore, Darboux transformation of the coupled CQNLS dynamic system on a time-space scale is constructed, and the N-soliton solution is obtained. These results effectively combine the theory of differential equations with difference equations and become a bridge connecting continuous and discrete analysis.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] New Exact Solutions for High Dispersive Cubic-Quintic Nonlinear Schrodinger Equation
    Xie, Yongan
    Tang, Shengqiang
    JOURNAL OF APPLIED MATHEMATICS, 2014,
  • [42] Criteria for existence and stability of soliton solutions of the cubic-quintic nonlinear Schroedinger equation
    Schürmann, H.W.
    Serov, V.S.
    Physical Review E - Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 2000, 62 (2 B): : 2821 - 2826
  • [43] New exact solutions to the high dispersive cubic-quintic nonlinear Schrodinger equation
    Xie, Yingying
    Yang, Zhaoyu
    Li, Lingfei
    PHYSICS LETTERS A, 2018, 382 (36) : 2506 - 2514
  • [44] STABILITY OF EXACT SOLUTIONS OF THE CUBIC-QUINTIC NONLINEAR SCHRODINGER EQUATION WITH PERIODIC POTENTIAL
    Kengne, E.
    Vaillancourt, R.
    NONLINEAR OSCILLATIONS, 2011, 13 (04): : 569 - 583
  • [45] Traveling wave solutions of the generalized nonlinear Schrodinger equation with cubic-quintic nonlinearity
    Kudryashov, Nikolay A.
    OPTIK, 2019, 188 : 27 - 35
  • [46] COUPLED NONLOCAL NONLINEAR SCHR?DINGER EQUATION AND N-SOLITON SOLUTION FORMULA WITH DARBOUX TRANSFORMATION
    Rui Fan
    Fajun Yu
    Annals of Applied Mathematics, 2019, 35 (01) : 47 - 62
  • [47] Solitary wave solutions for high dispersive cubic-quintic nonlinear Schrodinger equation
    Azzouzi, F.
    Triki, H.
    Mezghiche, K.
    El Akrmi, A.
    CHAOS SOLITONS & FRACTALS, 2009, 39 (03) : 1304 - 1307
  • [48] ON RESTRICTED N-SOLITON SOLUTIONS OF THE NONLINEAR SCHRODINGER-EQUATION
    VYSLOUKH, VA
    CHEREDNIK, IV
    THEORETICAL AND MATHEMATICAL PHYSICS, 1987, 71 (01) : 346 - 351
  • [49] N-soliton solutions of general nonlinear Schrodinger equation with derivative
    Zhai Wen
    Chen Deng-Yuan
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2008, 49 (05) : 1101 - 1104
  • [50] N-soliton solutions in the higher order nonlinear Schrodinger equation
    Li, ZH
    Zhou, GS
    Su, DC
    FIBER OPTIC COMPONENTS AND OPTICAL COMMUNICATIONS II, 1998, 3552 : 226 - 231