The Darboux Transformation and N-Soliton Solutions of Coupled Cubic-Quintic Nonlinear Schrodinger Equation on a Time-Space Scale

被引:5
|
作者
Dong, Huanhe [1 ]
Wei, Chunming [1 ]
Zhang, Yong [1 ]
Liu, Mingshuo [1 ]
Fang, Yong [1 ]
机构
[1] Shandong Univ Sci & Technol, Coll Math & Syst Sci, Qingdao 266590, Peoples R China
基金
中国国家自然科学基金;
关键词
coupled cubic-quintic nonlinear Schrodinger equation; time-space scales; Darboux transformation; N-soliton solution; BACKLUND TRANSFORMATION; WAVE SOLUTIONS; SYSTEMS;
D O I
10.3390/fractalfract6010012
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The coupled cubic-quintic nonlinear Schrodinger (CQNLS) equation is a universal mathematical model describing many physical situations, such as nonlinear optics and Bose-Einstein condensate. In this paper, in order to simplify the process of similar analysis with different forms of the coupled CQNLS equation, this dynamic system is extended to a time-space scale based on the Lax pair and zero curvature equation. Furthermore, Darboux transformation of the coupled CQNLS dynamic system on a time-space scale is constructed, and the N-soliton solution is obtained. These results effectively combine the theory of differential equations with difference equations and become a bridge connecting continuous and discrete analysis.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Darboux transformation and soliton solutions for the coupled cubic-quintic nonlinear Schrodinger equations in nonlinear optics
    Qi, Feng-Hua
    Tian, Bo
    Lu, Xing
    Guo, Rui
    Xue, Yu-Shan
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2012, 17 (06) : 2372 - 2381
  • [2] The Darboux Transformation and N-Soliton Solutions of Gerdjikov-Ivanov Equation on a Time-Space Scale
    Dong, Huanhe
    Huang, Xiaoqian
    Zhang, Yong
    Liu, Mingshuo
    Fang, Yong
    AXIOMS, 2021, 10 (04)
  • [3] SOLITON SOLUTIONS OF THE CUBIC-QUINTIC NONLINEAR SCHRODINGER EQUATION WITH VARIABLE COEFFICIENTS
    Triki, Houria
    Wazwaz, Abdul-Majid
    ROMANIAN JOURNAL OF PHYSICS, 2016, 61 (3-4): : 360 - 366
  • [4] Criteria for existence and stability of soliton solutions of the cubic-quintic nonlinear Schrodinger equation
    Schürmann, HW
    Serov, VS
    PHYSICAL REVIEW E, 2000, 62 (02): : 2821 - 2826
  • [5] Exact solutions for the cubic-quintic nonlinear Schrodinger equation
    Zhu, Jia-Min
    Ma, Zheng-Yi
    CHAOS SOLITONS & FRACTALS, 2007, 33 (03) : 958 - 964
  • [6] Darboux Transformation and N-Soliton Solution for the Coupled Modified Nonlinear Schrodinger Equations
    Zhang, Hai-Qiang
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2012, 67 (12): : 711 - 722
  • [7] Matter wave soliton solutions of the cubic-quintic nonlinear Schrodinger equation with an anharmonic potential
    Liu, Yifang
    Li, Guo-Rong
    APPLIED MATHEMATICS AND COMPUTATION, 2013, 219 (09) : 4847 - 4852
  • [8] Analytical nonautonomous soliton solutions for the cubic-quintic nonlinear Schrodinger equation with distributed coefficients
    He, Ji-da
    Zhang, Jie-fang
    Zhang, Meng-yang
    Dai, Chao-qing
    OPTICS COMMUNICATIONS, 2012, 285 (05) : 755 - 760
  • [9] Study of Exact Solutions to Cubic-Quintic Nonlinear Schrodinger Equation in Optical Soliton Communication
    Liu Bin
    Ruan Hang-Yu
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2012, 57 (05) : 731 - 736
  • [10] The Soliton Scattering of the Cubic-Quintic Nonlinear Schrodinger Equation on the External Potentials
    Aklan, Nor Amirah Busul
    Umarov, Bakhram
    22ND NATIONAL SYMPOSIUM ON MATHEMATICAL SCIENCES (SKSM22), 2015, 1682