Fragmented blind docking: a novel protein-ligand binding prediction protocol

被引:16
|
作者
Grasso, Gianvito [1 ]
Di Gregorio, Arianna [1 ,2 ]
Mavkov, Bojan [1 ]
Piga, Dario [1 ]
Labate, Giuseppe Falvo D'Urso [3 ,4 ]
Danani, Andrea [1 ]
Deriu, Marco A. [2 ]
机构
[1] IDSIA USI SUPSI, Dalle Molle Inst Artificial Intelligence, Lugano, Switzerland
[2] Politecn Torino, PolitoBIOMedLab, Dept Mech & Aerosp Engn, Turin, Italy
[3] Enginlife Engn Solut, Turin, Italy
[4] 7HC SRL, Rome, Italy
来源
JOURNAL OF BIOMOLECULAR STRUCTURE & DYNAMICS | 2022年 / 40卷 / 24期
关键词
Blind docking; molecular docking; protein-ligand interactions; virtual screening; DRUG DESIGN; MM-PBSA; MOLECULAR DOCKING; HIV-1; PROTEASE; FREE-ENERGIES; MM/GBSA; MM/PBSA; GBSA; RECOGNITION; PERFORMANCE;
D O I
10.1080/07391102.2021.1988709
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
In the present paper we propose a novel blind docking protocol based on Autodock-Vina. The developed docking protocol can provide binding site identification and binding pose prediction at the same time, by a systematical exploration of the protein volume performed with several preliminary docking calculations. In our opinion, this protocol can be successfully applied during the first steps of the virtual screening pipeline, because it provides binding site identification and binding pose prediction at the same time without visual evaluation of the binding site. After the binding pose prediction, MM/GBSA re-scoring rescoring procedures has been applied to improve the accuracy of the protein-ligand bound state. The FRAD protocol has been tested on 116 protein-ligand complexes of the Heat Shock Protein 90 - alpha, on 176 of Human Immunodeficiency virus protease 1, and on more than 100 protein-ligand system taken from the PDBbind dataset. Overall, the FRAD approach combined to MM/GBSA re-scoring can be considered as a powerful tool to increase the accuracy and efficiency with respect to other standard docking approaches when the ligand-binding site is unknown.
引用
收藏
页码:13472 / 13481
页数:10
相关论文
共 50 条
  • [41] Search for approaches to improving the calculation accuracy of the protein-ligand binding energy by docking
    Sulimov, A. V.
    Kutov, D. C.
    Katkova, E. V.
    Kondakova, O. A.
    Sulimov, V. B.
    RUSSIAN CHEMICAL BULLETIN, 2017, 66 (10) : 1913 - 1924
  • [42] In Pursuit of Fully Flexible Protein-Ligand Docking: Modeling the Bilateral Mechanism of Binding
    Henzler, Angela M.
    Rarey, Matthias
    MOLECULAR INFORMATICS, 2010, 29 (03) : 164 - 173
  • [43] Combining Docking Pose Rank and Structure with Deep Learning Improves Protein-Ligand Binding Mode Prediction over a Baseline Docking Approach
    Morrone, Joseph A.
    Weber, Jeffrey K.
    Tien Huynh
    Luo, Heng
    Cornell, Wendy D.
    JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2020, 60 (09) : 4170 - 4179
  • [44] AutoDockFR: Advances in Protein-Ligand Docking with Explicitly Specified Binding Site Flexibility
    Ravindranath, Pradeep Anand
    Forli, Stefano
    Goodsell, David S.
    Olson, Arthur J.
    Sanner, Michel F.
    PLOS COMPUTATIONAL BIOLOGY, 2015, 11 (12)
  • [45] A docking interaction study of the effect of critical mutations in ribonuclease A on protein-ligand binding
    Mukherjee, S
    De, SY
    Ghosh, Z
    Dasgupta, S
    BIOCHEMISTRY AND MOLECULAR BIOLOGY EDUCATION, 2005, 33 (05) : 335 - 343
  • [46] Reliable and Accurate Solution to the Induced Fit Docking Problem for Protein-Ligand Binding
    Miller, Edward B.
    Murphy, Robert B.
    Sindhikara, Daniel
    Borrelli, Kenneth W.
    Grisewood, Matthew J.
    Ranalli, Fabio
    Dixon, Steven L.
    Jerome, Steven
    Boyles, Nicholas A.
    Day, Tyler
    Ghanakota, Phani
    Mondal, Sayan
    Rafi, Salma B.
    Troast, Dawn M.
    Abel, Robert
    Friesner, Richard A.
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2021, 17 (04) : 2630 - 2639
  • [47] Prediction of the interaction of metallic moieties with proteins: An update for protein-ligand docking techniques
    Sciortino, Giuseppe
    Rodriguez-Guerra Pedregal, Jaime
    Lledos, Agusti
    Garribba, Eugenio
    Marechal, Jean-Didier
    JOURNAL OF COMPUTATIONAL CHEMISTRY, 2018, 39 (01) : 42 - 51
  • [48] A High Performance Cloud-Based Protein-Ligand Docking Prediction Algorithm
    Chen, Jui-Le
    Tsai, Chun-Wei
    Chiang, Ming-Chao
    Yang, Chu-Sing
    BIOMED RESEARCH INTERNATIONAL, 2013, 2013
  • [49] Interformer: an interaction-aware model for protein-ligand docking and affinity prediction
    Lai, Houtim
    Wang, Longyue
    Qian, Ruiyuan
    Huang, Junhong
    Zhou, Peng
    Ye, Geyan
    Wu, Fandi
    Wu, Fang
    Zeng, Xiangxiang
    Liu, Wei
    NATURE COMMUNICATIONS, 2024, 15 (01)
  • [50] Protein-ligand structure prediction
    Strack, Rita
    NATURE METHODS, 2024, 21 (04) : 549 - 549