共 50 条
Strongly nonzero points and elliptic pseudoprimes
被引:0
|作者:
Babinkostova, Liljana
[1
]
Fillmore, Dylan
[2
]
Lamkin, Philip
[3
]
Lin, Alice
[4
]
Yost-Wolff, Calvin L.
[5
]
机构:
[1] Boise State Univ, Dept Math, Boise, ID 83725 USA
[2] Univ South Carolina, Dept Math, Columbia, SC 29208 USA
[3] Carnegie Mellon Univ, Dept Math, Pittsburgh, PA 15213 USA
[4] Princeton Univ, Dept Math, Princeton, NJ 08544 USA
[5] MIT, Dept Math, Cambridge, MA 02139 USA
来源:
INVOLVE, A JOURNAL OF MATHEMATICS
|
2021年
/
14卷
/
01期
基金:
美国国家科学基金会;
关键词:
elliptic curves;
pseudoprimes;
strongly nonzero elliptic pseudoprimes;
elliptic Carmichael numbers;
D O I:
10.2140/involve.2021.14.65
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
Efficiently distinguishing prime and composite numbers is one of the fundamental problems in number theory. A Fermat pseudoprime is a composite number N which satisfies Fermat's little theorem for a specific base b: b(N) (-) (1) equivalent to 1 mod N. A Carmichael number N is a Fermat pseudoprime for all b with gcd(b, N) = 1. D. Gordon (1987) introduced analogues of Fermat pseudoprimes and Carmichael numbers for elliptic curves with complex multiplication (CM): elliptic pseudoprimes, strong elliptic pseudoprimes and elliptic Carmichael numbers. It has previously been shown that no CM curve has a strong elliptic Carmichael number. We give bounds on the fraction of points on a curve for which a fixed composite number N can be a strong elliptic pseudoprime. J. Silverman (2012) extended Gordon's notion of elliptic pseudoprimes and elliptic Carmichael numbers to arbitrary elliptic curves. We provide probabilistic bounds for whether a fixed composite number N is an elliptic Carmichael number for a randomly chosen elliptic curve.
引用
收藏
页码:65 / 88
页数:24
相关论文