Strongly nonzero points and elliptic pseudoprimes

被引:0
|
作者
Babinkostova, Liljana [1 ]
Fillmore, Dylan [2 ]
Lamkin, Philip [3 ]
Lin, Alice [4 ]
Yost-Wolff, Calvin L. [5 ]
机构
[1] Boise State Univ, Dept Math, Boise, ID 83725 USA
[2] Univ South Carolina, Dept Math, Columbia, SC 29208 USA
[3] Carnegie Mellon Univ, Dept Math, Pittsburgh, PA 15213 USA
[4] Princeton Univ, Dept Math, Princeton, NJ 08544 USA
[5] MIT, Dept Math, Cambridge, MA 02139 USA
来源
INVOLVE, A JOURNAL OF MATHEMATICS | 2021年 / 14卷 / 01期
基金
美国国家科学基金会;
关键词
elliptic curves; pseudoprimes; strongly nonzero elliptic pseudoprimes; elliptic Carmichael numbers;
D O I
10.2140/involve.2021.14.65
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Efficiently distinguishing prime and composite numbers is one of the fundamental problems in number theory. A Fermat pseudoprime is a composite number N which satisfies Fermat's little theorem for a specific base b: b(N) (-) (1) equivalent to 1 mod N. A Carmichael number N is a Fermat pseudoprime for all b with gcd(b, N) = 1. D. Gordon (1987) introduced analogues of Fermat pseudoprimes and Carmichael numbers for elliptic curves with complex multiplication (CM): elliptic pseudoprimes, strong elliptic pseudoprimes and elliptic Carmichael numbers. It has previously been shown that no CM curve has a strong elliptic Carmichael number. We give bounds on the fraction of points on a curve for which a fixed composite number N can be a strong elliptic pseudoprime. J. Silverman (2012) extended Gordon's notion of elliptic pseudoprimes and elliptic Carmichael numbers to arbitrary elliptic curves. We provide probabilistic bounds for whether a fixed composite number N is an elliptic Carmichael number for a randomly chosen elliptic curve.
引用
收藏
页码:65 / 88
页数:24
相关论文
共 50 条
  • [1] ON TYPES OF ELLIPTIC PSEUDOPRIMES
    Babinkostova, L.
    Hernandez-Espiet, A.
    Kim, H.
    GROUPS COMPLEXITY CRYPTOLOGY, 2021, 13 (01) : 1:1 - 1:33
  • [2] Orders of points on elliptic curves
    Shparlinski, IE
    AFFINE ALGEBRAIC GEOMETRY, 2005, 369 : 245 - 251
  • [3] Singular torsion points on elliptic curves
    Boxall, J
    Grant, D
    MATHEMATICAL RESEARCH LETTERS, 2003, 10 (5-6) : 847 - 866
  • [4] Torsion points and reduction of elliptic curves
    Yasuda, Masaya
    ACTA ARITHMETICA, 2016, 176 (01) : 89 - 100
  • [5] ON THE ELLIPTIC CURVES WITH INFINITE RATIONAL POINTS
    Kwon, Jung Won
    Park, Hwasin
    JP JOURNAL OF ALGEBRA NUMBER THEORY AND APPLICATIONS, 2018, 40 (05): : 843 - 854
  • [6] POINTS OF ORDER 13 ON ELLIPTIC CURVES
    Kamienny, Sheldon
    Newman, Burton
    FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI, 2018, 58 (01) : 121 - 129
  • [7] Rational points on quadratic elliptic surfaces
    Sadek, Mohammad
    EUROPEAN JOURNAL OF MATHEMATICS, 2022, 8 (SUPPL 2) : 674 - 686
  • [8] Rational points on quadratic elliptic surfaces
    Mohammad Sadek
    European Journal of Mathematics, 2022, 8 : 674 - 686
  • [9] Rational points on some elliptic surfaces
    Jabara, Enrico
    ACTA ARITHMETICA, 2012, 153 (01) : 93 - 108
  • [10] Averages of the number of points on elliptic curves
    Martin, Greg
    Pollack, Paul
    Smith, Ethan
    ALGEBRA & NUMBER THEORY, 2014, 8 (04) : 813 - 836