Probing the polar-nonpolar oxide interfaces using resonant x-ray standing wave techniques

被引:1
|
作者
Kuo, Cheng-Tai [1 ]
Lin, Shih-Chieh [2 ]
Chuang, Yi-De [3 ]
机构
[1] SLAC Natl Accelerator Lab, Stanford Synchrotron Radiat Lightsource, Menlo Pk, CA 94025 USA
[2] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA
[3] Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA
来源
关键词
RESOLVED PHOTOEMISSION-SPECTROSCOPY; DYNAMICAL DIFFRACTION; EMERGENT PHENOMENA; ELECTRON-GAS; SURFACE;
D O I
10.1116/6.0001484
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Transition metal (TM) oxide heterostructure superlattices have attracted great attention in research communities because of their emergent interfacial phenomena that do not exist in the bulk form. In order to understand the mechanisms that cause these phenomena, it is important to use depth-resolved spectroscopies to study the electronic structure across the buried oxide interfaces. In this review, we focus on the recent applications of standing wave (SW) photoemission (SW-XPS) and resonant inelastic x-ray scattering (SW-RIXS) spectroscopy to study the depth profiles of an electronic structure or carriers around the polar-nonpolar oxide interfaces. Using the incident photon energies near the TM x-ray absorption resonance, the created SW excitation can enhance the spectral response and certain electronic transitions, providing important insight into the interfacial electronic structure in the energy and real space regimes. Following the background introductions, we describe two SW experiments and demonstrate that the combination of SW-XPS and SW-RIXS has the potential to obtain the depth distribution of electronic/orbital states around the buried interfaces with Angstrom precision.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Resonant inelastic x-ray scattering of curium oxide
    Kvashnina, K. O.
    Butorin, S. M.
    Shuh, D. K.
    Guo, J. -H.
    Werme, L.
    Nordgren, J.
    PHYSICAL REVIEW B, 2007, 75 (11)
  • [42] X-RAY STANDING WAVES AND SURFACE EXAFS STUDIES OF ELECTROCHEMICAL INTERFACES
    ABRUNA, HD
    BOMMARITO, GM
    YEE, HS
    ACCOUNTS OF CHEMICAL RESEARCH, 1995, 28 (06) : 273 - 279
  • [43] X-RAY STANDING WAVES AND SPECULAR REFLECTION IN THE STUDY OF ELECTROCHEMICAL INTERFACES
    WHITE, JH
    BEDZYK, MJ
    BILDERBACK, DW
    BOMMARITO, GM
    ALBARELLI, MJ
    ABRUNA, HD
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1988, 135 (03) : C150 - C150
  • [44] Trace metal ion partitioning at polymer film-metal oxide interfaces: Long-period X-ray standing wave study
    Yoon, TH
    Trainor, TP
    Eng, PJ
    Bargar, JR
    Brown, GE
    LANGMUIR, 2005, 21 (10) : 4503 - 4511
  • [45] Study of oxide precipitates in silicon using X-ray diffraction techniques
    Caha, Ondrej
    Bernatova, Silvie
    Meduna, Mojmir
    Svoboda, Milan
    Bursik, Jiri
    PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2011, 208 (11): : 2587 - 2590
  • [46] Probing Novel Order Parameters in Multiferroics with X-ray Resonant Scattering
    McMorrow, D. F.
    Beale, T.
    Bland, S.
    Boothroyd, A. T.
    Ewings, R.
    Forrest, T.
    Hatton, P. D.
    Joly, Y.
    Mannix, D.
    Prabhakaran, R. D.
    Walker, H.
    Wilkins, S. B.
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2007, 63 : S91 - S91
  • [47] Double-channel X-ray standing wave technique
    Afanasev, A.M., 1600, (116):
  • [48] Standing wave approach in the theory of X-ray magnetic reflectivity
    Andreeva, M.A.
    Baulin, R.A.
    Repchenko, Yu. L.
    Journal of Synchrotron Radiation, 2019, 26 (02) : 483 - 496
  • [49] Microbeam x-ray standing wave and high resolution diffraction
    Kazimirov, A
    Bilderback, DH
    Huang, R
    Sirenko, A
    SYNCHROTRON RADIATION INSTRUMENTATION, 2004, 705 : 1027 - 1030
  • [50] Standing wave approach in the theory of X-ray magnetic reflectivity
    Andreeva, M. A.
    Baulin, R. A.
    Repchenko, Yu. L.
    JOURNAL OF SYNCHROTRON RADIATION, 2019, 26 : 483 - 496