Probing the polar-nonpolar oxide interfaces using resonant x-ray standing wave techniques

被引:1
|
作者
Kuo, Cheng-Tai [1 ]
Lin, Shih-Chieh [2 ]
Chuang, Yi-De [3 ]
机构
[1] SLAC Natl Accelerator Lab, Stanford Synchrotron Radiat Lightsource, Menlo Pk, CA 94025 USA
[2] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA
[3] Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA
来源
关键词
RESOLVED PHOTOEMISSION-SPECTROSCOPY; DYNAMICAL DIFFRACTION; EMERGENT PHENOMENA; ELECTRON-GAS; SURFACE;
D O I
10.1116/6.0001484
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Transition metal (TM) oxide heterostructure superlattices have attracted great attention in research communities because of their emergent interfacial phenomena that do not exist in the bulk form. In order to understand the mechanisms that cause these phenomena, it is important to use depth-resolved spectroscopies to study the electronic structure across the buried oxide interfaces. In this review, we focus on the recent applications of standing wave (SW) photoemission (SW-XPS) and resonant inelastic x-ray scattering (SW-RIXS) spectroscopy to study the depth profiles of an electronic structure or carriers around the polar-nonpolar oxide interfaces. Using the incident photon energies near the TM x-ray absorption resonance, the created SW excitation can enhance the spectral response and certain electronic transitions, providing important insight into the interfacial electronic structure in the energy and real space regimes. Following the background introductions, we describe two SW experiments and demonstrate that the combination of SW-XPS and SW-RIXS has the potential to obtain the depth distribution of electronic/orbital states around the buried interfaces with Angstrom precision.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Characterization of intermetallic layer with nanoresolution using X-ray standing wave technique
    Cserhati, C.
    Erdelyi, Z.
    Balogh, Z.
    Daroczi, L.
    Csik, A.
    Langer, G.
    Varga, M.
    Zizak, I.
    Erko, A.
    Beke, D. L.
    DIFFUSION IN MATERIALS - DIMAT2008, 2009, 289-292 : 369 - +
  • [32] X-ray standing wave analysis of nanostructures using partially coherent radiation
    Tiwari, M. K.
    Das, Gangadhar
    Bedzyk, M. J.
    APPLIED PHYSICS LETTERS, 2015, 107 (10)
  • [33] DETERMINATION OF PHOTOELECTRON EMISSION DEPTH USING THE X-RAY STANDING WAVE TECHNIQUE
    BEDZYK, M
    KOVALCHUK, MV
    MATERLIK, G
    PHYSICS OF METALS, 1985, 6 (01): : 158 - 163
  • [34] COMBINED ANALYSIS OF OVERLAYER/S/GAAS INTERFACES WITH PHOTOEMISSION SPECTROSCOPY AND X-RAY STANDING-WAVE
    OSHIMA, M
    SCIMECA, T
    SUGIYAMA, M
    MAEYAMA, S
    OIGAWA, H
    NANNICHI, Y
    HASHIZUME, H
    APPLIED SURFACE SCIENCE, 1993, 70-1 (1 -4 pt B) : 496 - 501
  • [35] USE OF X-RAY TECHNIQUES IN STUDIES OF ELECTROCHEMICAL INTERFACES
    OGRADY, WE
    MCBREEN, J
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1988, 195 : 70 - COLL
  • [36] Determination of interlayer composition at buried interfaces using soft x-ray resonant reflectivity
    Nayak, Maheswar
    Lodha, G. S.
    Sinha, A. K.
    Nandedkar, R. V.
    Shivashankar, S. A.
    APPLIED PHYSICS LETTERS, 2006, 89 (18)
  • [37] Depth-resolved x-ray absorption fine structure study of Fe/Si interfaces using x-ray standing waves
    Gupta, Ajay
    Rajput, Parasmani
    Meneghini, Carlo
    PHYSICAL REVIEW B, 2007, 76 (19)
  • [38] Probing the polarity of ferroelectric thin films with x-ray standing waves
    Bedzyk, MJ
    Kazimirov, A
    Marasco, DL
    Lee, TL
    Foster, CM
    Bai, GR
    Lyman, PF
    Keane, DT
    PHYSICAL REVIEW B, 2000, 61 (12): : R7873 - R7876
  • [39] X-ray standing wave technique with spatial resolution: In-plane characterization of surfaces and interfaces by full-field x-ray fluorescence imaging
    Zhao, Wenyang
    Sakurai, Kenji
    PHYSICAL REVIEW MATERIALS, 2019, 3 (02):
  • [40] Interface-resolved study of magnetism in MgO/FeCoB/MgO trilayers using x-ray standing wave techniques
    Jamal, Md. Shahid
    Gupta, Pooja
    Sergeev, Ilya
    Leupold, Olaf
    Kumar, Dileep
    PHYSICAL REVIEW B, 2023, 107 (07)