Distinguishing the inverse spin Hall effect photocurrent of electrons and holes by comparing to the classical Hall effect

被引:1
|
作者
Zhang, Yang [1 ,2 ]
Liu, Yu [1 ,2 ]
Zeng, Xiao Lin [1 ,2 ]
Wu, Jing [1 ,2 ]
Yu, Jin Ling [3 ]
Chen, Yong Hai [1 ,2 ]
机构
[1] Chinese Acad Sci, Beijing Key Lab Low Dimens Semicond Mat & Devices, Inst Semicond, Key Lab Semicond Mat Sci, Beijing 100083, Peoples R China
[2] Univ Chinese Acad Sci, Ctr Mat Sci & Optoelect Engn, Beijing 100049, Peoples R China
[3] Fuzhou Univ, Sch Phys & Informat Engn, Inst Micro Nano Devices & Solar Cells, Fuzhou, Peoples R China
来源
OPTICS EXPRESS | 2020年 / 28卷 / 06期
关键词
TRANSPORT; POLARIZATION;
D O I
10.1364/OE.387692
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The photo-excited electrons and holes move in the same direction in the diffusion and in the opposite direction in the drift under an electric field. Therefore, the contribution to the inverse spin Hall current of photo-excited electrons and holes in the diffusion regime is different to that in the drift regime under electric field. By comparing the classical Hall effect with the inverse spin Hall effect in both diffusion and drift regime, we develop an optical method to distinguish the contributions of electrons and holes in the inverse spin Hall effect. It is found that the contribution of the inverse spin Hall effect of electrons and holes in an InGaAs/AlGaAs un-doped multiple quantum well is approximately equal at room temperature. (C) 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
引用
收藏
页码:8331 / 8340
页数:10
相关论文
共 50 条
  • [21] Fluctuation contribution to spin Hall effect in superconductors
    Watanabe, Akimitsu
    Adachi, Hiroto
    Kato, Yusuke
    PHYSICAL REVIEW B, 2022, 106 (10)
  • [22] Spin Hall Effect in Disordered Organic Solids
    Yu, Z. G.
    PHYSICAL REVIEW LETTERS, 2015, 115 (02)
  • [23] Nonlocal Measurement as a Probe of the Spin Hall Effect in Topological Insulators
    Stephen, Gregory M.
    Vail, Owen A.
    DeMell, Jennifer E.
    Hanbicki, Aubrey T.
    Taylor, Patrick J.
    Friedman, Adam L.
    PHYSICAL REVIEW APPLIED, 2021, 16 (03)
  • [24] Non-Markovian feature of the classical Hall effect
    Abdurakhmanov, Ilkhom B.
    Adamian, Gurgen G.
    Antonenko, Nikolay, V
    Kanokov, Zakir
    EUROPEAN PHYSICAL JOURNAL B, 2018, 91 (10)
  • [25] Spin Hall and spin Nernst effect in dilute ternary alloys
    Tauber, Katarina
    Fedorov, Dmitry V.
    Gradhand, Martin
    Mertig, Ingrid
    PHYSICAL REVIEW B, 2013, 87 (16)
  • [26] Inverse spin Hall effect from pulsed spin current in organic semiconductors with tunable spin-orbit coupling
    Sun, Dali
    van Schooten, Kipp J.
    Kavand, Marzieh
    Malissa, Hans
    Zhang, Chuang
    Groesbeck, Matthew
    Boehme, Christoph
    Vardeny, Z. Valy
    NATURE MATERIALS, 2016, 15 (08) : 863 - +
  • [27] Modeling the photo-induced inverse spin-Hall effect in Pt/semiconductor junctions
    Bottegoni, F.
    Zucchetti, C.
    Isella, G.
    Pinotti, E.
    Finazzi, M.
    Ciccacci, F.
    JOURNAL OF APPLIED PHYSICS, 2018, 124 (03)
  • [28] The Mechanism of the Formation of the Spin Hall Effect in a Sharp Focus
    Kotlyar, Victor V.
    Stafeev, Sergey S.
    Telegin, Alexey M.
    Kozlova, Elena S.
    PHOTONICS, 2023, 10 (10)
  • [29] Dark-field spin Hall effect of light
    Baishya, Upasana
    Kumar, Nitish
    Viswanathan, Nirmal K.
    OPTICS LETTERS, 2022, 47 (17) : 4479 - 4482
  • [30] Photonic spin Hall effect with controlled transmission by metasurfaces
    Yuan, Jun
    Zhou, Yi
    Chen, Rui
    Ma, Yungui
    JAPANESE JOURNAL OF APPLIED PHYSICS, 2017, 56 (11)