A thermal model for calculating axial temperature distribution of overhead conductor under laboratory conditions

被引:11
作者
Zhang, Xudong [1 ]
Ying, Zhanfeng [1 ]
Chen, Yuansheng [1 ]
Chen, Xiong [2 ,3 ]
机构
[1] Nanjing Univ Sci & Technol, Sch Energy & Power Engn, Xiaolingwei 200, Nanjing, Jiangsu, Peoples R China
[2] State Key Lab Smart Grid Protect & Control, Nanjing, Jiangsu, Peoples R China
[3] NARI Grp Corp, State Grid Elect Power Res Inst, Nanjing, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Thermal model of overhead conductor; Axial temperature; Parameter identification; Nonlinear state-space equation; ELECTROTHERMAL COORDINATION; PART I; LINES;
D O I
10.1016/j.epsr.2018.10.008
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Most traditional thermal models of overhead conductor neglect the axial temperature distribution along the length of conductor. In order to provide a necessary foundation for calculating axial conductor temperature distribution in real weather conditions, a thermal model is proposed for the axial conductor temperature calculation under laboratory environment. This proposed model is established with the equivalent thermal network, and expressed as a nonlinear state-space equation. An identification method is presented to determine the conductor thermal parameters, which are non-weather related and hardly to be calculated theoretically. The interior-point algorithm is employed to optimize the objective function of parameter identification. The effectiveness of identification method and proposed thermal model are validated by experiment results. This study will provide the basic modelling principle, parameter identification method and conductor thermal parameters to develop the conductor thermal model under the real weather conditions in the future.
引用
收藏
页码:223 / 231
页数:9
相关论文
共 32 条
[1]   Electrothermal coordination part II: Case studies [J].
Alguacil, N ;
Banakar, MH ;
Galiana, FD .
IEEE TRANSACTIONS ON POWER SYSTEMS, 2005, 20 (04) :1738-1745
[2]  
[Anonymous], 2002, THERM BEH OV COND TE
[3]  
[Anonymous], 2012, 738 IEEE
[4]   Electrothermal coordination - Part I: Theory and implementation schemes [J].
Banakar, H ;
Alguacil, N ;
Galiana, FD .
IEEE TRANSACTIONS ON POWER SYSTEMS, 2005, 20 (02) :798-805
[5]   Dynamic loading of overhead lines by adaptive learning techniques and distributed temperature sensing [J].
Bernini, R. ;
Minardo, A. ;
Persiano, G. V. ;
Vaccaro, A. ;
Villacci, D. ;
Zeni, L. .
IET GENERATION TRANSMISSION & DISTRIBUTION, 2007, 1 (06) :912-919
[6]  
Black W. Z., 1985, IEEE T POWER APPL SY, V104, P29
[7]   Stator-Winding Thermal Models for Short-Time Thermal Transients: Definition and Validation [J].
Boglietti, Aldo ;
Carpaneto, Enrico ;
Cossale, Marco ;
Vaschetto, Silvio .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2016, 63 (05) :2713-2721
[8]   A trust region method based on interior point techniques for nonlinear programming [J].
Byrd, RH ;
Gilbert, JC ;
Nocedal, J .
MATHEMATICAL PROGRAMMING, 2000, 89 (01) :149-185
[9]   A probabilistic protection against thermal overloads of transmission lines [J].
Carneiro, Juliano S. A. ;
Ferrarini, Luca .
ELECTRIC POWER SYSTEMS RESEARCH, 2011, 81 (10) :1874-1880
[10]   Incorporating Temperature Variations Into Transmission-Line Models [J].
Cecchi, Valentina ;
St Leger, Aaron ;
Miu, Karen ;
Nwankpa, Chika O. .
IEEE TRANSACTIONS ON POWER DELIVERY, 2011, 26 (04) :2189-2196