Impact of Processing Effects on Surface Segregation of Bottlebrush Polymer Additives

被引:8
|
作者
Lee, Dongjoo
Charpota, Nilesh [1 ]
Mei, Hao [2 ]
Terlier, Tanguy [3 ]
Pietrzak, Danica [1 ]
Stein, Gila E. [1 ]
Verduzco, Rafael [2 ,4 ]
机构
[1] Univ Tennessee, Dept Chem & Biomol Engn, Knoxville, TN 37996 USA
[2] Rice Univ, Dept Chem & Biomol Engn, Houston, TX 77005 USA
[3] Rice Univ, SIMS Lab, Shared Equipment ity, Houston, TX 77005 USA
[4] Rice Univ, Dept Mat Sci & Nanoengn, Houston, TX 77005 USA
基金
美国国家科学基金会;
关键词
STRATIFICATION; BLENDS; FILM; NANOPARTICLES; COPOLYMERS; MEMBRANES; ENTROPY;
D O I
10.1021/acs.macromol.2c01418
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
The surface properties of polymeric materials govern interactions with the surroundings and are responsible for various application-relevant properties. Recent studies have shown that bottlebrush polymers can be used to modify the surface chemistry of the polymers because they spontaneously segregate to the interfaces when they are blended with the linear polymers, driven in large part by entropic effects that arise from the unique architecture of bottlebrush polymers. However, while prior work has largely focused on equilibrium segregation profiles, kinetic and processing effects can also drive bottlebrush additives to surfaces and interfaces. In solution-cast blends of polymers and colloids, vertical stratification is controlled by the relative Peclet (Pe) numbers of the constituents, i.e., the relative rates of solvent evaporation and solute diffusion. Herein, we studied processing effects that drive bottlebrush additives to interfaces when blended with linear polymers. We prepared blends of bottlebrush polystyrene (BBPS) and linear perdeuterated polystyrene (dPS), where the BBPS side-chain length was fixed at N-sc = 48, the BBPS backbone length ranged from N-b = 30-260, and the dPS chain length ranged from N-m = 40-548. The relative Pe numbers of BBPS and dPS were varied by changing the solvent and sizes of BBPS and dPS. In contrast to other binary blends where the constituents have disparate sizes (e.g., colloid/colloid, polymer/colloid, and polymer/polymer), we found that the relative Pe number cannot account for the degree of segregation observed in these bottlebrush and linear polymer blends. For a fixed BBPS side-chain length, we observe stronger surface segregation of bottlebrush additives when the blend is cast using lower boiling point solvents and/or for blends with longer bottlebrush polymers. We further show that solvent annealing of the film can increase the enrichment of bottlebrush additives near surfaces. This study provides insight into the interplay of processing effects and blend thermodynamics that govern surface segregation of bottlebrush polymer additives.
引用
收藏
页码:8909 / 8917
页数:9
相关论文
共 50 条