Proteomic and biochemical assays of glutathione-related proteins in susceptible and multiple herbicide resistant Avena fatua L.

被引:18
作者
Burns, Erin E. [1 ]
Keith, Barbara K. [1 ]
Refai, Mohammed Y. [2 ]
Bothner, Brian [2 ]
Dyer, William E. [1 ]
机构
[1] Montana State Univ, Dept Plant Sci & Plant Pathol, POB 173150, Bozeman, MT 59717 USA
[2] Montana State Univ, Dept Chem & Biochem Res, POB 173400, Bozeman, MT 59717 USA
基金
美国国家卫生研究院;
关键词
Abiotic stress; Biochemical; Glutathione; Multiple herbicide resistance; Non-target site resistance; Proteomic; S-TRANSFERASES; WILD OAT; SAFENER; DETOXIFICATION; PURIFICATION; MAIZE; WHEAT; XENOBIOTICS; POPULATIONS; DERIVATIVES;
D O I
10.1016/j.pestbp.2017.06.007
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Extensive herbicide usage has led to the evolution of resistant weed populations that cause substantial crop yield losses and increase production costs. The multiple herbicide resistant (MHR) Avena fatua L. populations utilized in this study are resistant to members of all selective herbicide families, across five modes of action, available for A. fatua control in U.S. small grain production, and thus pose significant agronomic and economic threats. Resistance to ALS and ACCase inhibitors is not conferred by target site mutations, indicating that non-target site resistance mechanisms are involved. To investigate the potential involvement of glutathione-related enzymes in the MHR phenotype, we used a combination of proteomic, biochemical, and immunological approaches to compare their constitutive activities in herbicide susceptible (HS1 and HS2) and MHR (MHR3 and MHR4) A. fatua plants. Proteomic analysis identified three tau and one phi glutathione S-transferases (GSTs) present at higher levels in MHR compared to HS plants, while immunoassays revealed elevated levels of lambda, phi, and tau GSTs. GST specific activity towards 1-chloro-2,4-dinitrobenzene was 12-fold higher in MHR4 than in HS1 plants and 13-and 1.2-fold higher in MHR3 than in HS1 and HS2 plants, respectively. However, GST specific activities towards fenoxaprop-P-ethyl and imazamethabenz-methyl were not different between untreated MHR and HS plants. Dehydroascorbate reductase specific activity was 1.4-fold higher in MHR than HS plants. Pretreatment with the GST inhibitor NBD-Cl did not affect MHR sensitivity to fenoxaprop-P-ethyl application, while the herbicide safener and GST inducer mefenpyr reduced the efficacy of low doses of fenoxaprop-P-ethyl on MHR4 but not MHR3 plants. Mefenpyr treatment also partially reduced the efficacy of thiencarbazone-methyl or mesosulfuron-methyl on MHR3 or MHR4 plants, respectively. Overall, the GSTs described here are not directly involved in enhanced rates of fenoxaprop-P-ethyl or imazamethabenz-methyl metabolism in MHR A. fatua. Instead, we propose that the constitutively elevated GST proteins and related enzymes in MHR plants are representative of a larger, more global suite of abiotic stress-related changes. Published by Elsevier Inc.
引用
收藏
页码:69 / 78
页数:10
相关论文
共 77 条
[1]   Comparative proteomics reveals association of early accumulated proteins in conferring butachlor tolerance in three N2-fixing Anabaena spp. [J].
Agrawal, Chhavi ;
Sen, Sonia ;
Singh, Shilpi ;
Rai, Snigdha ;
Singh, Prashant Kumar ;
Singh, Vinay Kumar ;
Rai, L. C. .
JOURNAL OF PROTEOMICS, 2014, 96 :271-290
[2]   Production and scavenging of reactive oxygen species in chloroplasts and their functions [J].
Asada, Kozi .
PLANT PHYSIOLOGY, 2006, 141 (02) :391-396
[3]   The Biology of Canadian Weeds. 27. Avena fatua L. (updated) [J].
Beckie, Hugh J. ;
Francis, Ardath ;
Hall, Linda M. .
CANADIAN JOURNAL OF PLANT SCIENCE, 2012, 92 (07) :1329-1357
[4]  
BOND JS, 1981, ACTA BIOL MED GER, V40, P1365
[5]  
BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3
[6]   O-glucosyltransferase activities toward phenolic natural products and xenobiotics in wheat and herbicide-resistant and herbicide-susceptible black-grass (Alopecurus myosuroides) [J].
Brazier, M ;
Cole, DJ ;
Edwards, R .
PHYTOCHEMISTRY, 2002, 59 (02) :149-156
[7]   Study on the biochemical characterization of herbicide detoxification enzyme, glutathione S-transferase [J].
Cho, Hyun-Young ;
Kong, Kwang-Hoon .
BIOFACTORS, 2007, 30 (04) :281-287
[8]  
Chronopoulou E., 2014, Current Chemical Biology, V8, P58
[9]  
CLEVELAND DW, 1977, J BIOL CHEM, V252, P1102
[10]   A role for glutathione transferases functioning as glutathione peroxidases in resistance to multiple herbicides in black-grass [J].
Cummins, I ;
Cole, DJ ;
Edwards, R .
PLANT JOURNAL, 1999, 18 (03) :285-292