Optical Design of the TolTEC Millimeter-wave Camera

被引:23
|
作者
Bryan, Sean [1 ]
Austermann, Jason [2 ]
Ferrusca, Daniel [3 ]
Mauskopf, Philip [4 ]
McMahon, Jeff [5 ]
Montana, Alfredo [3 ]
Simon, Sara [5 ]
Novak, Giles [6 ,7 ]
Sanchez-Arguelles, David [3 ]
Wilson, Grant [8 ]
机构
[1] Arizona State Univ, Sch Elect Comp & Energy Engn, Tempe, AZ 85281 USA
[2] NIST, Quantum Sensors Grp, Boulder, CO USA
[3] Inst Nacl Astrofis Opt & Electr, Puebla, Mexico
[4] Arizona State Univ, Sch Earth & Space Explorat, Tempe, AZ USA
[5] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA
[6] Northwestern Univ, CIERA, Evanston, IL USA
[7] Northwestern Univ, Dept Phys & Astron, Evanston, IL USA
[8] Univ Massachusetts, Dept Astron, Amherst, MA 01003 USA
来源
MILLIMETER, SUBMILLIMETER, AND FAR-INFRARED DETECTORS AND INSTRUMENTATION FOR ASTRONOMY IX | 2018年 / 10708卷
关键词
millimeter-wave; galaxy; star formation; camera; kinetic inductance detectors; polarimetry;
D O I
10.1117/12.2314130
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
TolTEC is a new camera being built for the 50-meter Large Millimeter-wave Telescope (LMT) in Puebla, Mexico to survey distant galaxies and star-forming regions in the Milky Way. The optical design simultaneously couples the field of view onto focal planes at 150, 220, and 280 GHz. The optical design and detector properties, as well as a data-driven model of the atmospheric emission of the LMT site, inform the sensitivity model of the integrated instrument. This model is used to optimize the instrument design, and to calculate the mapping speed as an early forecast of the science reach of the instrument.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Millimeter-Wave Polarimeters Using Kinetic Inductance Detectors for TolTEC and Beyond
    Austermann, J. E.
    Beall, J. A.
    Bryan, S. A.
    Dober, B.
    Gao, J.
    Hilton, G.
    Hubmayr, J.
    Mauskopf, P.
    McKenney, C. M.
    Simon, S. M.
    Ullom, J. N.
    Vissers, M. R.
    Wilson, G. W.
    JOURNAL OF LOW TEMPERATURE PHYSICS, 2018, 193 (3-4) : 120 - 127
  • [2] Millimeter-Wave Polarimeters Using Kinetic Inductance Detectors for TolTEC and Beyond
    J. E. Austermann
    J. A. Beall
    S. A. Bryan
    B. Dober
    J. Gao
    G. Hilton
    J. Hubmayr
    P. Mauskopf
    C. M. McKenney
    S. M. Simon
    J. N. Ullom
    M. R. Vissers
    G. W. Wilson
    Journal of Low Temperature Physics, 2018, 193 : 120 - 127
  • [3] Bolocam: A millimeter-wave bolometric camera
    Glenn, J
    Bock, JJ
    Chattopadhyay, G
    Edgington, SF
    Lange, AE
    Zmuidzinas, J
    Mauskopf, PD
    Rownd, B
    Yuen, L
    Ade, PAR
    ADVANCED TECHNOLOGY MMW, RADIO, AND TERAHERTZ TELESCOPES, 1998, 3357 : 326 - 334
  • [4] Passive millimeter-wave camera with interferometric processing
    Nohmi, Hitoshi
    Ohnishi, Seiki
    kujubu, Osamu
    PASSIVE MILLIMETER-WAVE IMAGING TECHNOLOGY IX, 2006, 6211
  • [5] Design of the millimeter-wave receiver
    Zhao, Shuang
    Chen, Dianren
    MECHANICAL ENGINEERING, MATERIALS AND INFORMATION TECHNOLOGY II, 2014, 662 : 235 - 238
  • [6] The Design of Millimeter-Wave Quasi-optical Power Synthesizer
    Zhang, Yixia
    Wang, Qiang
    Huang, Chen
    Yang, Chun
    2016 15TH INTERNATIONAL CONFERENCE ON OPTICAL COMMUNICATIONS AND NETWORKS (ICOCN), 2016,
  • [7] Design of millimeter-wave receiver array
    Cai, Youzhi
    Yang, Hongchun
    Xue, Changjiang
    2013 INTERNATIONAL WORKSHOP ON MICROWAVE AND MILLIMETER WAVE CIRCUITS AND SYSTEM TECHNOLOGY (MMWCST), 2013, : 101 - 104
  • [8] Design of millimeter-wave emission component
    Zhao, Shuang
    Zhang, Lele
    ADVANCED DEVELOPMENT OF ENGINEERING SCIENCE IV, 2014, 1046 : 301 - 304
  • [9] Millimeter-wave CMOS circuit design
    Shigematsu, H
    Hirose, T
    Brewer, F
    Rodwell, M
    IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2005, 53 (02) : 472 - 477
  • [10] Data Fusion of Roadside Camera, LiDAR, and Millimeter-Wave Radar
    Liu, Shijie
    Wu, Jianqing
    Lv, Bin
    Pan, Xinhao
    Wang, Xiaorun
    IEEE SENSORS JOURNAL, 2024, 24 (20) : 32630 - 32640