Genetic and epigenetic control of plant heat responses

被引:196
作者
Liu, Junzhong [1 ]
Feng, Lili [2 ]
Li, Jianming [3 ]
He, Zuhua [1 ]
机构
[1] Chinese Acad Sci, Shanghai Inst Biol Sci, Inst Plant Physiol & Ecol, Natl Lab Plant Mol Genet, Shanghai 201602, Peoples R China
[2] ShanghaiTech Univ, Sch Life Sci & Technol, Shanghai, Peoples R China
[3] Chinese Acad Sci, Plant Stress Biol Ctr, Shanghai Inst Biol Sci, Plant Signaling Lab, Shanghai 201602, Peoples R China
关键词
heat; genetic mechanism; epigenetic regulation; small RNAs; transgenerational memory; ARABIDOPSIS CIRCADIAN CLOCK; TRANSCRIPTION FACTOR PIF4; ABIOTIC STRESS RESPONSES; HIGH-TEMPERATURE; DNA METHYLATION; SMALL RNAS; ACQUIRED THERMOTOLERANCE; AMBIENT-TEMPERATURE; DISEASE RESISTANCE; NICOTIANA-BENTHAMIANA;
D O I
10.3389/fpls.2015.00267
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Plants have evolved sophisticated genetic and epigenetic regulatory systems to respond quickly to unfavorable environmental conditions such as heat, cold, drought, and pathogen infections. In particular, heat greatly affects plant growth and development, immunity and circadian rhythm, and poses a serious threat to the global food supply. According to temperatures exposing, heat can be usually classified as warm ambient temperature (about 22-27 degrees C), high temperature (27-30 degrees C) and extremely high temperature (37-42 degrees C, also known as heat stress) for the model plant Arabidopsis thaliana. The genetic mechanisms of plant responses to heat have been well studied, mainly focusing on elevated ambient temperature-mediated morphological acclimation and acceleration of flowering, modulation of circadian clock and plant immunity by high temperatures, and thermotolerance to heat stress. Recently, great progress has been achieved on epigenetic regulation of heat responses, including DNA methylation, histone modifications, histone variants, ATP-dependent chromatin remodeling, histone chaperones, small RNAs, long non-coding RNAs and other undefined epigenetic mechanisms. These epigenetic modifications regulate the expression of heat-responsive genes and function to prevent heat-related damages. This review focuses on recent progresses regarding the genetic and epigenetic control of heat responses in plants, and pays more attention to the role of the major epigenetic mechanisms in plant heat responses. Further research perspectives are also discussed.
引用
收藏
页数:21
相关论文
共 147 条
[1]   Root-Specific Role for Nicotiana benthamiana RDR6 in the Inhibition of Chinese wheat mosaic virus Accumulation at Higher Temperatures [J].
Andika, Ida Bagus ;
Sun, Liying ;
Xiang, Rong ;
Li, Junmin ;
Chen, Jianping .
MOLECULAR PLANT-MICROBE INTERACTIONS, 2013, 26 (10) :1165-1175
[2]   Potent induction of Arabidopsis thaliana flowering by elevated growth temperature [J].
Balasubramanian, Sureshkumar ;
Sureshkumar, Sridevi ;
Lempe, Janne ;
Weigel, Detlef .
PLOS GENETICS, 2006, 2 (07) :980-989
[3]   Identification of Cassava MicroRNAs under Abiotic Stress [J].
Ballen-Taborda, Carolina ;
Plata, German ;
Ayling, Sarah ;
Rodriguez-Zapata, Fausto ;
Becerra Lopez-Lavalle, Luis Augusto ;
Duitama, Jorge ;
Tohme, Joe .
INTERNATIONAL JOURNAL OF GENOMICS, 2013, 2013
[4]   Heat stress response in plants:: a complex game with chaperones and more than twenty heat stress transcription factors [J].
Baniwal, SK ;
Bharti, K ;
Chan, KY ;
Fauth, M ;
Ganguli, A ;
Kotak, S ;
Mishra, SK ;
Nover, L ;
Port, M ;
Scharf, KD ;
Tripp, J ;
Weber, C ;
Zielinski, D ;
von Koskull-Döring, P .
JOURNAL OF BIOSCIENCES, 2004, 29 (04) :471-487
[5]   Historical Warnings of Future Food Insecurity with Unprecedented Seasonal Heat [J].
Battisti, David. S. ;
Naylor, Rosamond L. .
SCIENCE, 2009, 323 (5911) :240-244
[6]   The elucidation of stress memory inheritance in Brassica rapa plants [J].
Bilichak, Andriy ;
Ilnytskyy, Yaroslav ;
Woycicki, Rafal ;
Kepeshchuk, Nina ;
Fogen, Dawson ;
Kovalchuk, Igor .
FRONTIERS IN PLANT SCIENCE, 2015, 6 :1-20
[7]   Environmental Memory from a Circadian Oscillator: The Arabidopsis thaliana Clock Differentially Integrates Perception of Photic vs. Thermal Entrainment [J].
Boikoglou, Eleni ;
Ma, Zisong ;
von Korff, Maria ;
Davis, Amanda M. ;
Nagy, Ferenc ;
Davis, Seth J. .
GENETICS, 2011, 189 (02) :655-U796
[8]   Perspectives on deciphering mechanisms underlying plant heat stress response and thermotolerance [J].
Bokszczanin, Kamila L. ;
Fragkostefanakis, Sotirios .
FRONTIERS IN PLANT SCIENCE, 2013, 4
[9]   The Diversity, Biogenesis, and Activities of Endogenous Silencing Small RNAs in Arabidopsis [J].
Bologna, Nicolas G. ;
Voinnet, Olivier .
ANNUAL REVIEW OF PLANT BIOLOGY, VOL 65, 2014, 65 :473-503
[10]   Endogenous siRNAs derived from a pair of natural cis-antisense transcripts regulate salt tolerance in Arabidopsis [J].
Borsani, O ;
Zhu, JH ;
Verslues, PE ;
Sunkar, R ;
Zhu, JK .
CELL, 2005, 123 (07) :1279-1291